scholarly journals Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers

2010 ◽  
Vol 115 (D18) ◽  
Author(s):  
M. Fujiwara ◽  
H. Vömel ◽  
F. Hasebe ◽  
M. Shiotani ◽  
S.-Y. Ogino ◽  
...  
2018 ◽  
Vol 176 ◽  
pp. 05015
Author(s):  
Hélène Vérèmes ◽  
Guillaume Payen ◽  
Philippe Keckhut ◽  
Valentin Duflot ◽  
Jean-Luc Baray ◽  
...  

The 2-year lidar water vapor database (November 2013 - October 2015) of the Maïdo Observatory (Reunion Island / 21°S,55.5°E) is now processed. The performances of the lidar in providing accurate vertical structures are shown to be good. The ability to measure quantities of a few ppmv in the lower stratosphere is demonstrated (based on Cryogenic Frost point Hygrometer sonde/lidar profiles comparisons) for a 48-hour integration time period, up to 22 km (with a vertical resolution of 1.3 km).


2021 ◽  
Vol 21 (20) ◽  
pp. 15409-15430
Author(s):  
Nathaniel J. Livesey ◽  
William G. Read ◽  
Lucien Froidevaux ◽  
Alyn Lambert ◽  
Michelle L. Santee ◽  
...  

Abstract. The Microwave Limb Sounder (MLS), launched on NASA's Aura spacecraft in 2004, measures vertical profiles of the abundances of key atmospheric species from the upper troposphere to the mesosphere with daily near-global coverage. We review the first 15 years of the record of H2O and N2O measurements from the MLS 190 GHz subsystem (along with other 190 GHz information), with a focus on their long-term stability, largely based on comparisons with measurements from other sensors. These comparisons generally show signs of an increasing drift in the MLS “version 4” (v4) H2O record starting around 2010. Specifically, comparisons with v4.1 measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) indicate a ∼ 2 %–3 % per decade drift over much of the stratosphere, increasing to as much as ∼ 7 % per decade around 46 hPa. Larger drifts, of around 7 %–11 % per decade, are seen in comparisons to balloon-borne frost point hygrometer measurements in the lower stratosphere. Microphysical calculations considering the formation of polar stratospheric clouds in the Antarctic winter stratosphere corroborate a drift in MLS v4 water vapor measurements in that region and season. In contrast, comparisons with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission, and with ground-based Water Vapor Millimeter-wave Spectrometer (WVMS) instruments, do not show statistically significant drifts. However, the uncertainty in these comparisons is large enough to encompass most of the drifts identified in other comparisons. In parallel, the MLS v4 N2O product is shown to be generally decreasing over the same period (when an increase in stratospheric N2O is expected, reflecting a secular growth in emissions), with a more pronounced drift in the lower stratosphere than that found for H2O. Comparisons to ACE-FTS and to MLS N2O observations in a different spectral region, with the latter available from 2004 to 2013, indicate an altitude-dependent drift, growing from 5 % per decade or less in the mid-stratosphere to as much as 15 % per decade in the lower stratosphere. Detailed investigations of the behavior of the MLS 190 GHz subsystem reveal a drift in its “sideband fraction” (the relative sensitivity of the 190 GHz receiver to the two different parts of the microwave spectrum that it observes). Our studies indicate that sideband fraction drift accounts for much of the observed changes in the MLS H2O product and some portion of the changes seen in N2O. The 190 GHz sideband fraction drift has been corrected in the new “version 5” (v5) MLS algorithms, which have now been used to reprocess the entire MLS record. As a result of this correction, the MLS v5 H2O record shows no statistically significant drifts compared to ACE-FTS. However, statistically significant drifts remain between MLS v5 and frost point measurements, although they are reduced. Drifts in v5 N2O are about half the size of those in v4 but remain statistically significant. Scientists are advised to use MLS v5 data in all future studies. Quantification of interregional and seasonal to annual changes in MLS H2O and N2O will not be affected by the drift. However, caution is advised in studies using the MLS record to examine long-term (multiyear) variability and trends in either of these species, especially N2O; such studies should only be undertaken in consultation with the MLS team. Importantly, this drift does not affect any of the MLS observations made in other spectral regions such as O3, HCl, CO, ClO, or temperature.


2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


2014 ◽  
Vol 119 (18) ◽  
pp. 10,941-10,958 ◽  
Author(s):  
Cameron R. Homeyer ◽  
Laura L. Pan ◽  
Samuel W. Dorsi ◽  
Linnea M. Avallone ◽  
Andrew J. Weinheimer ◽  
...  

2013 ◽  
Vol 13 (4) ◽  
pp. 9653-9679 ◽  
Author(s):  
M. R. Schoeberl ◽  
A. E. Dessler ◽  
T. Wang

Abstract. The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies – both wet and dry – correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.


2019 ◽  
Vol 12 (2) ◽  
pp. 873-890
Author(s):  
Ivan Ortega ◽  
Rebecca R. Buchholz ◽  
Emrys G. Hall ◽  
Dale F. Hurst ◽  
Allen F. Jordan ◽  
...  

Abstract. Retrievals of vertical profiles of key atmospheric gases provide a critical long-term record from ground-based Fourier transform infrared (FTIR) solar absorption measurements. However, the characterization of the retrieved vertical profile structure can be difficult to validate, especially for gases with large vertical gradients and spatial–temporal variability such as water vapor. In this work, we evaluate the accuracy of the most common water vapor isotope (H216O, hereafter WV) FTIR retrievals in the lower and upper troposphere–lower stratosphere. Coincident high-quality vertically resolved WV profile measurements obtained from 2010 to 2016 with balloon-borne NOAA frost point hygrometers (FPHs) are used as reference to evaluate the performance of the retrieved profiles at two sites: Boulder (BLD), Colorado, and at the mountaintop observatory of Mauna Loa (MLO), Hawaii. For a meaningful comparison, the spatial–temporal variability has been investigated. We present results of comparisons among FTIR retrievals with unsmoothed and smoothed FPH profiles to assess WV vertical gradients. Additionally, we evaluate the quantitative impact of different a priori profiles in the retrieval of WV. An orthogonal linear regression analysis shows the best correlation among tropospheric layers using ERA-Interim (ERA-I) a priori profiles and biases are lower for unsmoothed comparisons. In Boulder, we found a negative bias of 0.02±1.9 % (r=0.95) for the 1.5–3 km layer. A larger negative bias of 11.1±3.5 % (r=0.97) was found in the lower free troposphere layer of 3–5 km attributed to rapid vertical change of WV, which is not always captured by the retrievals. The bias improves in the 5–7.5 km layer (1.0±5.3 %, r=0.94). The bias remains at about 13 % for layers above 7.5 km but below 13.5 km. At MLO the spatial mismatch is significantly larger due to the launch of the sonde being farther from the FTIR location. Nevertheless, we estimate a negative bias of 5.9±4.6 % (r=0.93) for the 3.5–5.5 km layer and 9.9±3.7 % (r=0.93) for the 5.5–7.5 km layer, and we measure positive biases of 6.2±3.6 % (r=0.95) for the 7.5–10 km layer and 12.6 % and greater values above 10 km. The agreement for the first layer is significantly better at BLD because the air masses are similar for both FTIR and FPH. Furthermore, for the first time we study the influence of different WV a priori profiles in the retrieval of selected gas profiles. Using NDACC standard retrievals we present results for hydrogen cyanide (HCN), carbon monoxide (CO), and ethane (C2H6) by taking NOAA FPH profiles as the ground truth and evaluating the impact of other WV profiles. We show that the effect is minor for C2H6 (bias <0.5 % for all WV sources) among all vertical layers. However, for HCN we found significant biases between 6 % for layers close to the surface and 2 % for the upper troposphere depending on the WV profile source. The best results (reduced bias and precision and r values closer to unity) are always found for pre-retrieved WV. Therefore, we recommend first retrieving WV to use in subsequent retrieval of gases.


1974 ◽  
Vol 52 (8) ◽  
pp. 1527-1531 ◽  
Author(s):  
H. J. Mastenbrook

Nearly 10 years of water-vapor measurements to heights of 30 km provide a basis for assessing the natural concentration of stratospheric water vapor and its variability. The measurements which began in 1964 have been made at monthly intervals from the mid-latitude location of Washington, D.C, using a balloon-borne frost-point hygrometer. The observations show the mixing ratio of water-vapor mass to air mass in the stratosphere to be in the general range of 1 to 4 p.p.m. with a modal concentration between 2 and 3 p.p.m. An annual cycle of mixing ratio is evident for the low stratosphere. A trend of water-vapor increase observed during the first 6 years does not persist beyond 1969 or 1970. The 6 year increase was followed by a marked decrease in 1971, with mixing ratios remaining generally below 3 p.p.m. thereafter. The measurements of recent years suggest that the series of observations may have begun during a period of low water-vapor concentration in the stratosphere.


2011 ◽  
Vol 4 (5) ◽  
pp. 933-954 ◽  
Author(s):  
A. Rozanov ◽  
K. Weigel ◽  
H. Bovensmann ◽  
S. Dhomse ◽  
K.-U. Eichmann ◽  
...  

Abstract. This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.


Sign in / Sign up

Export Citation Format

Share Document