scholarly journals Premonsoon/Postmonsoon Bay of Bengal Tropical Cyclones Intensity: Role of Air‐Sea Coupling and Large‐Scale Background State

2019 ◽  
Vol 46 (4) ◽  
pp. 2149-2157 ◽  
Author(s):  
S. Neetu ◽  
M. Lengaigne ◽  
J. Vialard ◽  
G. Samson ◽  
S. Masson ◽  
...  
2018 ◽  
Vol 176 (2) ◽  
pp. 951-977 ◽  
Author(s):  
K. Vijaya Kumari ◽  
S. Karuna Sagar ◽  
Yesubabu Viswanadhapalli ◽  
Hari Prasad Dasari ◽  
S. Vijaya Bhaskara Rao

2021 ◽  
Author(s):  
Nannan Qin ◽  
Liguang Wu ◽  
Qingyuan Liu

Abstract. It has been suggested that the inner eyewall structure may play an important role in the secondary eyewall formation (SEF) of tropical cyclones (TCs). This study is to further examine the role of the inner eyewall structure by comparing two numerical experiments, which were conducted with the same large-scale environment and initial and boundary conditions but different grid sizes. The SEF was simulated in the experiment with the finer grid spacing, but not in the other.Comparing the eyewall structure in the simulated TCs with and without the SEF indicates that the eyewall structure can play an important role in the SEF. For the simulated TC with the SEF, the eyewall is more upright with stronger updrafts, accompanied by a wide eyewall anvil at a higher altitude. Compared to the simulated TC without the SEF, diagnostic analysis reveals that the cooling outside the inner eyewall is induced by the sublimation, melting and evaporation of hydrometeors falling from the eyewall anvil. The cooling also induces upper-level dry, cool inflow below the anvil, prompting the subsidence and moat formation between the inner eyewall and the spiral rainband. In the simulated TC without the SEF, the cooling induced by the falling hydrometeors is significantly reduced and offset by the diabatic warming. There is no upper-level dry inflow below the anvil and no moat formation between the inner eyewall and the spiral rainband. This study suggests that a realistic simulation of the intense eyewall convection is important to the prediction of the SEF in the numerical forecasting model.


2018 ◽  
Vol 31 (10) ◽  
pp. 3831-3848 ◽  
Author(s):  
Lakshmi Krishnamurthy ◽  
Gabriel A. Vecchi ◽  
Xiaosong Yang ◽  
Karin van der Wiel ◽  
V. Balaji ◽  
...  

Abstract Unprecedented high-intensity flooding induced by extreme precipitation was reported over Chennai in India during November–December of 2015, which led to extensive damage to human life and property. It is of utmost importance to determine the odds of occurrence of such extreme floods in the future, and the related climate phenomena, for planning and mitigation purposes. Here, a suite of simulations from GFDL high-resolution coupled climate models are used to investigate the odds of occurrence of extreme floods induced by extreme precipitation over Chennai and the role of radiative forcing and/or large-scale SST forcing in enhancing the probability of such events in the future. The climate of twentieth-century experiments with large ensembles suggest that the radiative forcing may not enhance the probability of extreme floods over Chennai. Doubling of CO2 experiments also fails to show evidence for an increase of such events in a global warming scenario. Further, this study explores the role of SST forcing from the Indian and Pacific Oceans on the odds of occurrence of Chennai-like floods. Neither El Niño nor La Niña enhances the probability of extreme floods over Chennai. However, a warm Bay of Bengal tends to increase the odds of occurrence of extreme Chennai-like floods. In order to trigger a Chennai like-flood, a conducive weather event, such as a tropical depression over the Bay of Bengal with strong transport of moisture from a moist atmosphere over the warm Bay, is necessary for the intense precipitation.


2018 ◽  
Vol 176 (1) ◽  
pp. 441-461 ◽  
Author(s):  
N. Nanaji Rao ◽  
V. Brahmananda Rao ◽  
S. S. V. S. Ramakrishna ◽  
B. R. Srinivasa Rao

2016 ◽  
Author(s):  
K. G. Sumesh ◽  
S. Abhilash ◽  
M. R. Ramesh Kumar

Abstract. Abstract. Tropical storms are intense low pressure systems that form over warm tropical ocean basins. Depending upon the intensity, they are classified as depressions, cyclones and severe cyclones. Northern Indian Ocean (NIO) is highly prone to intense tropical storms and roughly 5–7 tropical storms are forming over this basin every year. Various Cyclogenesis indices are used to forecast these tropical storms over various basins including NIO. In this aspect we propose a revised Convective System Genesis Parameter (CSGP) to identify regions favourable for storm genesis. The revised CSGP is constructed by using different combinations and thresholds of five variables namely, the Low Level Relative Vorticity, the Low Level Convergence, the Shear co-efficient, the Convective Instability parameter and the Humidity parameter. The relative role of each individual variable on CSGP is analysed separately for different categories of the storms over both Arabian sea and Bay of Bengal. The composite structure of the CSGP for different categories of the storms is further evaluated separately for distinct large scale background state. The results show that the revised CSGP is capable of distinguishing different categories of the storms. The CSGP exhibits large variability during distinct large scale background state. It is also found that the individual variables contribute in a different way during monsoon and non-monsoon seasons. The revised CSGP can be used to forecast all categories of convective systems such as depressions, cyclones and severe cyclones over NIO during the monsoon as well as non-monsoon seasons.


2014 ◽  
Vol 120 (3-4) ◽  
pp. 797-810 ◽  
Author(s):  
M. S. Girishkumar ◽  
K. Suprit ◽  
S. Vishnu ◽  
V. P. Thanga Prakash ◽  
M. Ravichandran

2019 ◽  
Vol 8 (2) ◽  
pp. 68-83 ◽  
Author(s):  
Shyama Mohanty ◽  
Raghu Nadimpalli ◽  
Krishna K. Osuri ◽  
Sujata Pattanayak ◽  
U.C. Mohanty ◽  
...  

2019 ◽  
Vol 76 (7) ◽  
pp. 1845-1863 ◽  
Author(s):  
Yi Dai ◽  
Sharanya J. Majumdar ◽  
David S. Nolan

Abstract This study investigates the role of the asymmetric interaction between the tropical cyclone (TC) and the environmental flow in governing the TC inner-core asymmetric structure. Motivated by the limitations of bulk measures of vertical wind shear in representing the complete environmental flow, the TC outflow is used as a focus for the asymmetric interaction. By analyzing an idealized numerical simulation, it is demonstrated that parcels can go directly from the asymmetric rainband to the upper-level outflow. The relatively large vertical mass flux in the rainband region also suggests that the asymmetric rainband is an important source of the outflow. In a simulation that suppresses convection by reducing the water vapor within the rainband region, the upper-level outflow is weakened, further supporting the hypothesis that the rainband and outflow are directly connected. Finally, it is demonstrated that the asymmetric outflow and the outer rainband are coupled through the descending inflow below the outflow. Some of the main characteristics of the outflow–rainband relationship are also supported by a real-case numerical simulation of Hurricane Bill (2009). The relationship is potentially useful for understanding and predicting the evolution of the TC inner-core structure during the interaction with the large-scale environmental flow.


MAUSAM ◽  
2021 ◽  
Vol 42 (3) ◽  
pp. 257-260
Author(s):  
AKHILESH GUPTA ◽  
A. MUTHUCHAMI

The role of EI-Nino in modulating tropical cyclone motion over Bay of Bengal during post monsoon season has been examined. Storms which formed during the years 1901-1987 have been classified into recuriving or those of which crossing north of 17° N and non-recurving or those of which crossing south of 17° N the east coast of India. It has been found that in most of the cases (87 %) during EI-Nino years, the tropical cyclones which formed over Bay of Bengal crossed south of 17° N, i.e. south Andhra Pradesh Tamil Nadu coast, whereas tropical cyclones, ed during the year prior to the EI-Nino years [El- Nino (-1 ) year] are seen crossing mostly (in 79% of cases) either h of 17°N or recurving m northeastward direction. In other years this kind of behaviour is not generally onseerved. The correlation between southern oscillation indices and the fractional values of storms crossing south of 170 N for the period 1901-1987 (n=87) is found to be ---0.63 which is significant at 1 per cent level.


Sign in / Sign up

Export Citation Format

Share Document