scholarly journals D�j� Vu: Understanding Subduction Zones’ Cycle of Seismicity

Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Terri Cook

A unique geodetic data set from Japan’s Nankai subduction zone offers an unparalleled opportunity to study surface deformation spanning almost an entire seismic cycle.

2018 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Thaís Machado Scherrer ◽  
George Sand França ◽  
Raimundo Silva ◽  
Daniel Brito de Freitas ◽  
Carlos da Silva Vilar

ABSTRACT. Following our own previous work, we reanalyze the nonextensive behavior over the circum-Pacific subduction zones evaluating the impact of using different types of magnitudes in the results. We used the same data source and time interval of our previous work, the NEIC catalog in the years between 2001 and 2010. Even considering different data sets, the correlation between q and the subduction zone asperity is perceptible, but the values found for the nonextensive parameter in the considered data sets presents an expressive variation. The data set with surface magnitude exhibits the best adjustments.Keywords: Nonextensivity, Seismicity, Solid Earth, Earthquake.RESUMO. No mesmo caminho do nosso trabalho anterior, reanalisamos o comportamento não extensivo sobre as zonas de subducção do círcuo de fogo do Pacífico, avaliando o impacto do uso de diferentes tipos de magnitude nos resultados. Utilizamos o mesmo intervalo de dados e fonte de nosso trabalho anterior, do catálogo NEIC entre os anos 2001 e 2010. Mesmo considerando diferentes conjuntos de dados, a correlação entre q e a aspereza das zonas de subducção é perceptível, mas os valores encontrados para o parâmetro não extensivo no conjuntos de dados considerados apresentam uma variação expressiva. O conjunto de dados com magnitude de superfície exibe os melhores ajustes.Palavras-chave: Não extensividade, Sismicidade, Terra Sólida, Terremotos.


2020 ◽  
Author(s):  
Sue Smrekar ◽  
Darby Dyar ◽  
Jörn Helbert ◽  
Scott Hensley ◽  
Daniel Nunes ◽  
...  

<p>VERITAS is a proposed Discovery mission concept, currently in Step 2 (Phase A), and would launch in 2026. VERITAS addresses one of the most fundamental questions in rocky planetary evolution: why did twin planets follow different evolutionary paths? Venus’ hot lithosphere may be a good analog for early Earth, and could be responsible for the apparent lack of plate tectonics.  Determining the factors that lead to the initiation of plate tectonics would inform our predictions for rocky Earth-sized exoplanets.  VERITAS answers key questions about Venus’ geologic evolution and searches for current activity and evidence for past or present water.</p> <p><strong>Payload:</strong> VERITAS carries two instruments and conducts gravity science. The VISAR X-band [Hensley et al., this meeting] measurements include: 1) a global digital elevation model (DEM) with 250 m postings, 5 m height accuracy, 2) Synthetic aperture radar (SAR) imaging at 30 m horizontal resolution globally, 3) SAR imaging at 15 m resolution > 20% of the surface and 4) surface deformation from RPI at 2 mm precision for at least 12 targeted, potentially active areas. VEM [Helbert et al., this meeting] would produce surface coverage of most of the surface in 6 NIR bands located within 5 atmospheric windows and of 8 atmospheric bands for calibration and water vapor measurements. VERITAS would use Ka-band uplink and downlink to create a global gravity field with 3 mgal accuracy / 160 km resolution.</p> <p><strong>Science:</strong> VERITAS looks for the chemical fingerprint of past water in the form of low Fe, high Si rock in the tessera plateaus [Dyar et al. submitted, 2020; Helbert et al., submitted, 2020] and for present day volcanic outgassing of volatiles in the form of near surface water outgassing due to recent or active volcanism. </p> <p>VERITAS uses a variety of approaches to search for present day activity, including 1) tectonic and volcanic cm-scale surface deformation, 2) chemical weathering, 3) thermal emission from recent or active volcanism, 4) topographic or surface roughness changes, and 5) comparisons to past mission data sets.</p> <p>VERITAS constrains rocky planet evolution via: 1) examining the origin of tesserae plateaus -possible continent-like features, 2) assessing the history of volcanism, 3) looking for evidence of prior tectonic or impact features buried by volcanism, and 4) determining the origin of tectonic features such as huge arcuate troughs that have been compared to Earth’s subduction zones.</p> <p>VERITAS gravity data (resolution 160 km, 3x better than avg. Magellan resolution), would enable estimation of elastic thickness (a proxy for thermal gradient) and determination of core size [Mazerico et al. Fall AGU 2019].</p> <p> </p> <p><strong>Conclusions</strong>: VERITAS would create a rich data set of high-resolution topography, imaging, spectroscopy, and gravity. These co-registered data would be on par with those acquired for Mercury, Mars and the Moon that have revolutionized our understanding of these bodies. In addition to answering fundamental science questions, VERITAS’ data would motivate further Venus missions.  Active surface deformation would promote a seismic mission. Accurate topography plus surface rock type would optimize targeting of surface or areal missions.</p> <p><em>Acknowledgements</em>: A portion of this research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The information presented to about the VERITAS mission concept is pre-decisional and is provided for planning and discussion purposes only.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sharadha Sathiakumar ◽  
Sylvain Barbot

AbstractThe Himalayan megathrust accommodates most of the relative convergence between the Indian and Eurasian plates, producing cycles of blind and surface-breaking ruptures. Elucidating the mechanics of down-dip segmentation of the seismogenic zone is key to better determine seismic hazards in the region. However, the geometry of the Himalayan megathrust and its impact on seismicity remains controversial. Here, we develop seismic cycle simulations tuned to the seismo-geodetic data of the 2015 Mw 7.8 Gorkha, Nepal earthquake to better constrain the megathrust geometry and its role on the demarcation of partial ruptures. We show that a ramp in the middle of the seismogenic zone is required to explain the termination of the coseismic rupture and the source mechanism of up-dip aftershocks consistently. Alternative models with a wide décollement can only explain the mainshock. Fault structural complexities likely play an important role in modulating the seismic cycle, in particular, the distribution of rupture sizes. Fault bends are capable of both obstructing rupture propagation as well as behave as a source of seismicity and rupture initiation.


2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2014 ◽  
Vol 119 (10) ◽  
pp. 7805-7822 ◽  
Author(s):  
Tsutomu Takahashi ◽  
Koichiro Obana ◽  
Yojiro Yamamoto ◽  
Ayako Nakanishi ◽  
Shuichi Kodaira ◽  
...  

2007 ◽  
Vol 59 (10) ◽  
pp. 1073-1082 ◽  
Author(s):  
Takao Tabei ◽  
Mari Adachi ◽  
Shin’ichi Miyazaki ◽  
Tsuyoshi Watanabe ◽  
Sayomasa Kato

2021 ◽  
Author(s):  
Figen Eskikoy ◽  
Semih Ergintav ◽  
Uğur Dogan ◽  
Seda Özarpacı ◽  
Alpay Özdemir ◽  
...  

<p>On 2020 October 30, an M<sub>w</sub>6.9 earthquake struck offshore Samos Island. Severe structural damages were observed in Greek Islands and city of Izmir (Turkey). 114 people lost their lives and more than a thousand people were injured in Turkey. The earthquake triggered local tsunami. Significant seismic activity occurred in this region following the earthquake and ~1800 aftershocks (M>1) were recorded by KOERI within the first three days. In this study, we analyze the slip distribution and aftershocks of the 2020 earthquake.</p><p>For the aftershock relocations, the continuous waveforms were collected from NOA, Disaster and Emergency Management Authority of Turkey (AFAD) and KOERI networks. The database   was created based on merged catalogs from AFAD and KOERI. For estimating optimized aftershock location distribution, the P and S phases of the aftershocks are picked manually and relocated with double difference algorithm. In addition, source mechanisms of aftershocks M>4 are obtained from regional body and surface waveforms.</p><p>The surface deformation of the earthquake was obtained from both descending and ascending orbits of the Sentinel-1 A/B and ALOS2 satellites. Since the rupture zone is beneath the Gulf of Kusadası, earthquake related deformation in the interferograms can only be observed on the northern part of the Samos Island. We processed all possible pairs chose the image pairs with the lowest noise level.</p><p>In this study, we used 25 continuous GPS stations which are compiled from TUSAGA-Aktif in Turkey and NOANET in Greece. In addition to continuous GPS data, on 2020 November 1, GPS survey was initiated and the earthquake deformation was measured on 10 GNSS campaign sites (TUTGA), along onshore of Turkey.</p><p>The aim of this study is to estimate the spatial and temporal rupture evolution of the earthquake from geodetic data jointly with near field displacement waveforms. To do so, we use the Bayesian Earthquake Analysis Tool (BEAT).</p><p>As a first step of the study, rectangular source parameters were estimated by using GPS data. In order to estimate the slip distribution, we used both ascending and descending tracks of Sentinel-1 data, ALOS2 and GPS displacements. In our preliminary geodetic data based finite fault model, we used the results of focal mechanism and GPS data inversion solutions for the initial fault plane parameters. The slip distribution results indicate that earthquake rupture is ~35 km long and the maximum slip is ~2 m normal slip along a north dipping fault plane. This EW trending, ~45° north dipping normal faulting system consistent with this tectonic regime in the region. This seismically active area is part of a N-S extensional regime and controlled primarily by normal fault systems.</p><p><strong>Acknowledgements</strong></p><p>This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number 2007K12-873.</p>


2019 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Rahmat Setyo Yuliatmoko ◽  
Telly Kurniawan

The amount of stress released by an earthquake can be calculated with a stress drop, the stress ratio before and after an earthquake where the stress accumulated in a fault or a subduction zone is immediately released during an earthquake. The purpose of this research is to calculate the amount of stress drop in faults and subduction in Maluku and Halmahera and their variations and relate them to the geological conditions in the area so that the tectonic characteristics in the area can be identified. This research employed mathematical analysis and the Nelder Mead Simplex nonlinear inversion methods. The results show that Maluku and Halmahera are the area with complex tectonic conditions and large earthquake impacts. The Maluku sea earthquake generated a stress drop of 0.81 MPa with a reverse fault mechanism in the zone of subduction, while for the Halmahera earthquake the stress drop value was 52.72 MPa, a typical strike-slip mechanism in the fault zone. It can be concluded that there is a difference in the stress drop between the subduction and fault zones; the stress drop in the fault was greater than that in the subduction zone due to different rock structure and faulting mechanisms as well as differences in the move slip rate that plays a role in the process of holding out the stress on a rock. This information is very important to know the amount of pressure released from the earthquake which has a very large impact as part of disaster mitigation measures.


2020 ◽  
Author(s):  
Eszter Szűcs ◽  
Sándor Gönczy ◽  
István Bozsó ◽  
László Bányai ◽  
Alexandru Szakacs ◽  
...  

Abstract. Rocksalt has remarkable mechanical properties and a high economic importance, however, this strength of salt compared to other rocks makes it a rather vulnerable material. Human activities could lead to acceleration of the dissolution of soluble rocksalt and collapse of subsurface caverns. Although sinkhole development can be considered local geological disaster regarding the characteristic size of surface depressions the deformations can result in catastrophic events. In this study we report the spatiotemporal evolution of surface deformation in Solotvyno salt mine area in Ukraine based on Sentinel-1 interferometric synthetic aperture radar measurements. Although the mining operations were finished in 2010 several sinkholes have been opened up since then. Our results show that even though the enormous risk managing efforts the sinkholes continue to expand with a maximum line-of-sight deformation rate of 5 cm/yr. The deformation time series show a rather linear feature and unfortunately no slowdown of the processes can be recognized based on the investigated 4.5 year-long data set. We utilized both ascending and descending satellite passes to discriminate the horizontal and vertical deformations and our results revealed that vertical deformation is much more dominant in the area. With the 6-day repetition time of Sentinel-1 observations the evolution of surface changes can be detected in quasi real-time which can facilitate disaster response and recovery.


2011 ◽  
Vol 12 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hideki Hamamoto ◽  
Makoto Yamano ◽  
Shusaku Goto ◽  
Masataka Kinoshita ◽  
Keiko Fujino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document