Enhanced imaging of the Cocorp seismic line, Wind River Mountains

Author(s):  
J. Sharry ◽  
R. T. Langan ◽  
D. B. Jovanovich ◽  
G. M. Jones ◽  
N. R. Hill ◽  
...  
2020 ◽  
Vol 19 (3) ◽  
pp. 49-64
Author(s):  
E. M. Bogdanova ◽  
Yu. L. Trubacheva ◽  
O. M. Yugai ◽  
S. V. Chernyshov ◽  
E. G. Rybakov ◽  
...  

AIM: to compare multiparametric endorectal ultrasound (ERUS) and enhanced imaging colonoscopy in the diagnosis of early colorectal cancer.PATIENTS AND METHODS: the study included 78 patients with epithelial rectal tumor. All the patients underwent multiparametric ERUS and colonoscopy with examination by narrow beam imaging (NBI) at optical magnification. All the patients were operated.RESULTS: a morphological examination removed specimens revealed adenomas in 48 cases, in 19 specimens – adenocarcinomas in situ and T1, and in 11 specimens – adenocarcinomas with invasion of the muscle layer or deeper. When calculating the accuracy indicators of diagnostic methods for groups of patients with adenoma, Tis-T1 adenocarcinoma, and T2-T3 adenocarcinoma, the difference in the sensitivity and specificity of the methods in none of the presented groups did not reach the level of statistical significance (p>0.05).ROC analysis showed that ultrasound has a prognostic value comparable to colonoscopy. The area difference was 0.013 (p=0.85).CONCLUSION: endoscopy and ultrasound have similar value in the diagnosis of malignant transformation of rectal adenomas.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


2005 ◽  
Vol 13 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Jun Li ◽  
James M. Williams ◽  
Zhong Zhong ◽  
Klaus E. Kuettner ◽  
Matthias Aurich ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Stephen A. Veitch ◽  
Marianne Karplus ◽  
Galen Kaip ◽  
Lucia F. Gonzalez ◽  
Jason M. Amundson ◽  
...  

Abstract Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ~50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (~65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 494.13-496
Author(s):  
Ian S. Osborne
Keyword(s):  

Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


Sign in / Sign up

Export Citation Format

Share Document