The Influence of Deep Ocean Diffusivity on the Temporal Variability of the Thermohaline Circulation

Author(s):  
Kotaro Sakai ◽  
W. Richard Peltier
1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Crustaceana ◽  
1999 ◽  
Vol 72 (8) ◽  
pp. 999-1018 ◽  
Author(s):  
David Horne

AbstractIt has been suggested that some modern anchialine cave invertebrates originated from deepsea ancestors of considerable antiquity (>100 million years). An alternative view is that such taxa could not have a long bathyal/abyssal history because of extended periods of anoxia in the oceans during the Mesozoic and Cainozoic, and that consequently their ancestors should be sought among shallow-water fauna. In order to assist in the evaluation of these opposing hypotheses, the Phanerozoic record of oxygen-deficient conditions in the water column is reviewed, with special regard for postulated ''anoxic events'' as a causative mechanism for major changes in biodiversity (e.g., mass extinctions). A key issue is the relative importance, through the Phanerozoic, of two types of deep ocean circulation: Halothermal Circulation (HTC), involving the formation of Warm Saline Deep Water (WSDW) in the tropics, promotes anoxia, while Thermohaline Circulation (THC), characterized by Cold Deep Water (CDW) formed at high latitudes, ventilates the deep ocean. Particular attention is paid to the evidence of the mid-Cretaceous Cenomanian-Turonian Boundary Event. The (apparently) widely accepted view that the deep ocean was mainly anoxic until about 40 million years ago (the time of origin of the modern psychrosphere) is challenged. Evidence from the deep-ocean record of bioturbated sediments suggests that there has been a Cold Deep Water component in ocean circulation for at least the last 90 million years (mid-Cretaceous onwards) and possibly throughout the Phanerozoic. This conclusion has important implications for hypotheses about the antiquity of deep-ocean benthonic invertebrate faunas. Es wurde vorgeschlagen, dass moderne, anchialine Hohleninvertebraten von Tiefseeformen bedeutenden Alters (>100 Millionen Jahre) abstammen. Eine alternative Ansicht besagt, dass solche Taxa aufgrund ausgedehnter, anoxischer Perioden im Mesozoikum und Kanozoikum keine besonders lange bathyale/abyssale Geschichte haben k onnen. Ihre Vorfahren solten daher bei Flachwasserformen gesucht werden. Um zur Evaluierung dieser gegensatzlichen Hypothesen beizutragen, werden Indizien fur sauerstoffarme Verhaltnisse in der Wassersaule wahrend des Phanerozoikums einer neuen Begutachtung unterzogen, mit bezonderer Berucksichtigung postulierter ''anoxischer Ereignisse'' als kausalem Mechanismus fur grossere Anderungen in der Biodiversitat (z. B. Massen-Aussterben). Ein Schlusselfaktor ist die relative Bedeutung zweier Typen von Tiefsee-Zirkulationen wahrend des Phanerozoikums. Die halothermale Zirkulation (Halothermal Curculation, HTC), die zur Bildung warmen, salinen Tiefenwassers (Warm Saline Deep Water, WSDW) in den Tropen fuhrt, fordert Anoxie, wahrend die thermohaline Zirkulation (Thermohaline Circulation, THC), charakterisiert durch in hohen Breiten gebildetes, kaltes Tiefenwasser (Cold Deep Water, CDW) die Tiefsee ventiliert. Besonderes Augenmerk wird auf die Ereignisse an der Cenoman-Turon-Grenze (Mittlere Kreide) gelegt. Die (offensichtlich) weithin akzeptierte Ansicht, dass die Tiefsee bis vor 40 Millionen Jahren grossteils anoxisch war (der Ursprungszeitpunkt der modernen Psychrosphare), wird in Frage gestellt. Hinweise auf durch Bioturbation gestorte TiefseeSedimente lassen vermuten, dass eine kalte Tiefenwasser-Komponente bei den Meereszirkulationen seit mindestens 90 Millionen Jahren (seit der mittleren Kreide), und moglicherweise wahrend des gesamten Phanerozoikums, existiert hat. Diese Schlussfolgerung hat wichtige Auswirkungen auf Hypothesen uber das Alter der benthischen Tiefsee-Evertebratenfauna.


1990 ◽  
Vol 14 ◽  
pp. 330
Author(s):  
Edward Birchfield ◽  
Matthew Wyant

A coupled ocean-atmosphere model is formulated, incorporating an ocean comprised of two surface and one deep-ocean boxes, horizontal and vertical mixing, a thermohaline circulation, and forcing by latitudinal differential surface heating and evaporation. Surface fluxes are determined through coupling with a two-box steady-state atmospheric energy-balance model The hydrological cycle, thermohaline circulation and latitudinal exchange rate in the atmosphere are each controlled by an independent parameter. For a weak hydrological cycle, a cold low-salinity deep-ocean equilibrium exists with deep water produced in high latitudes, resembling the modern ocean; for a strong hydrological cycle, a warm saline deep ocean is found with deep water produced in lower latitudes, similar to proposed models of a Cretaceous ocean. More complex solutions exist for an intermediate range of parameters. These include co-existence of both of the above limiting circulations as stable steady states and an oscillatory solution about the cold deep-ocean limit case. In general for this model, the cold deep-ocean case appears less stable than the warm saline deep-ocean case.


2005 ◽  
Vol 18 (13) ◽  
pp. 2482-2496 ◽  
Author(s):  
Fabio Dalan ◽  
Peter H. Stone ◽  
Andrei P. Sokolov

Abstract The sensitivity of the ocean’s climate to the diapycnal diffusivity in the ocean is studied for a global warming scenario in which CO2 increases by 1% yr−1 for 75 yr. The thermohaline circulation slows down for about 100 yr and recovers afterward, for any value of the diapycnal diffusivity. The rates of slowdown and of recovery, as well as the percentage recovery of the circulation at the end of 1000-yr integrations, are variable, but a direct relation with the diapycnal diffusivity cannot be found. At year 70 (when CO2 has doubled) an increase of the diapycnal diffusivity from 0.1 to 1.0 cm2 s−1 leads to a decrease in surface air temperature of about 0.4 K and an increase in sea level rise of about 4 cm. The steric height gradient is divided into thermal component and haline component. It appears that, in the first 60 yr of simulated global warming, temperature variations dominate the salinity ones in weakly diffusive models, whereas the opposite occurs in strongly diffusive models. The analysis of the vertical heat balance reveals that deep-ocean heat uptake is due to reduced upward isopycnal diffusive flux and parameterized-eddy advective flux. Surface warming, induced by enhanced CO2 in the atmosphere, leads to a reduction of the isopycnal slope, which translates into a reduction of the above fluxes. The amount of reduction is directly related to the magnitude of the isopycnal diffusive flux and parameterized-eddy advective flux at equilibrium. These latter fluxes depend on the thickness of the thermocline at equilibrium and hence on the diapycnal diffusion. Thus, the increase of deep-ocean heat uptake with diapycnal diffusivity is an indirect effect that the latter parameter has on the isopycnal diffusion and parameterized-eddy advection.


2012 ◽  
Vol 42 (12) ◽  
pp. 2283-2296 ◽  
Author(s):  
Guihua Wang ◽  
Rui Xin Huang ◽  
Jilan Su ◽  
Dake Chen

Abstract The dynamic influence of thermohaline circulation on wind-driven circulation in the South China Sea (SCS) is studied using a simple reduced gravity model, in which the upwelling driven by mixing in the abyssal ocean is treated in terms of an upward pumping distributed at the base of the upper layer. Because of the strong upwelling of deep water, the cyclonic gyre in the northern SCS is weakened, but the anticyclonic gyre in the southern SCS is intensified in summer, while cyclonic gyres in both the southern and northern SCS are weakened in winter. For all seasons, the dynamic influence of thermohaline circulation on wind-driven circulation is larger in the northern SCS than in the southern SCS. Analysis suggests that the upwelling associated with the thermohaline circulation in the deep ocean plays a crucial role in regulating the wind-driven circulation in the upper ocean.


2006 ◽  
Vol 2 (4) ◽  
pp. 371-397 ◽  
Author(s):  
N. Zeng

Abstract. A new mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can produce quasi-100 ky glacial-interglacial cycles. A key process is the burial and preservation of organic carbon by icesheets. The switch from glacial maximum to deglaciation is triggered by the ejection of glacial burial carbon when icesheets grow to sufficiently large size and subglacial transport becomes significant. Glacial inception is initiated by CO2 drawdown due to a ''rebound'' from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception is the CO2 uptake by vegetation regrowth in the previously ice-covered boreal regions. When tested using a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced self-sustaining glacial-interglacial cycles of duration about 93 ky, CO2 change of 90 ppmv, temperature change of 6°C under certain parameter regimes. Since the 100 ky cycles can not be easily explained by the weak Milankovitch astronomical forcing alone, this carbon-climate mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations.


Author(s):  
Han Dolman

This chapter focuses on the physics and dynamics of the ocean. It describes the variability of salinity and surface temperature, as well as the vertical temperature structure of the ocean, with the thermocline separating the variable top layer from the deeper ocean. It then describes the key forces in the ocean, as well as the geostrophic balance due to the Coriolis force and density differences. It derives the equations for the change of velocity with depth, the Ekman flow. Barotropic flow and baroclinic flow are elucidated and the general circulation of the ocean, with gyres and the effect of vorticity on their structure, is shown. The thermohaline circulation of the ocean with surface flow and returning deep ocean flows is described. Next, a simple model is used to show how salinity interacts with the thermohaline flow. Finally, as an example of ocean–land interaction, the El Niño phenomenon is described.


2019 ◽  
Vol 49 (8) ◽  
pp. 2075-2094 ◽  
Author(s):  
Jan K. Rieck ◽  
Claus W. Böning ◽  
Klaus Getzlaff

AbstractOceanic eddies are an important component in preconditioning the central Labrador Sea (LS) for deep convection and in restratifying the convected water. This study investigates the different sources and impacts of eddy kinetic energy (EKE) and its temporal variability in the LS with the help of a 52-yr-long hindcast simulation of a 1/20° ocean model. Irminger Rings (IR) are generated in the West Greenland Current (WGC) between 60° and 62°N, mainly affect preconditioning, and limit the northward extent of the convection area. The IR exhibit a seasonal cycle and decadal variations linked to the WGC strength, varying with the circulation of the subpolar gyre. The mean and temporal variations of IR generation can be attributed to changes in deep ocean baroclinic and upper-ocean barotropic instabilities at comparable magnitudes. The main source of EKE and restratification in the central LS are convective eddies (CE). They are generated by baroclinic instabilities near the bottom of the mixed layer during and after convection. The CE have a middepth core and reflect the hydrographic properties of the convected water mass with a distinct minimum in potential vorticity. Their seasonal to decadal variability is tightly connected to the local atmospheric forcing and the associated air–sea heat fluxes. A third class of eddies in the LS are the boundary current eddies shed from the Labrador Current (LC). Since they are mostly confined to the vicinity of the LC, these eddies appear to exert only minor influence on preconditioning and restratification.


2020 ◽  
Author(s):  
Susana M. Lebreiro ◽  
Silvia Nave ◽  
Laura Antón ◽  
Elizabeth Michel ◽  
Catherine Kissel ◽  
...  

<p>Located 300 km off West Iberia in the open NE Atlantic Ocean, the Tore seamount emerges from the 5.5 km surrounding abyssal plains to a summit rim at 2.2 km, which has an elliptical crater-like shape with a central depression 100 km in diameter. The ~5.5 km depth of the Tore internal basin is connected to the surrounding deep ocean basin by a single narrow gateway down to 4.3 km depth. This basin is exceptional because it is 1) a giant sediment-trap for vertical fluxes, with sediments unaffected by deep currents and erosion, containing a record of enhanced biogenic subtropical productivity during deglaciations, which can be examined mechanistically, 2) a natural laboratory to examine carbonate dissolution at 5.5 km water depth constrained by NADW deep ventilation during glacials, and 3) an excellent location to test sediment processes distant from continental margins and understand triggering mechanisms of downslope flows in the open, deep ocean. Not many cores have been recovered in the area at such 5.5 km depth and unite this singular environment. At the larger scale of North Atlantic circulation and productivity, the semi-isolated Tore seamount is a most valuable site to assess crucial scientific hypotheses related to thermohaline circulation, carbon cycling and climate variability. These challenging questions are framed in the IODP Initial Science Plan illuminating Earth´s Past, Present and Future, 2013-2023, theme Climate and Ocean Change.</p><p>Our APL applies for drilling one site in the middle of the Tore seamount at 5.5 km depth, to retrieve a complete Quaternary sedimentary sequence (180 m long). This carbonate rich archive will be compared with records available in the Northeast Atlantic and to be recovered during Expedition #771-Full2 (Hodell et al.).</p><p>We present results from a 24 long giant Calypso core taken in the APL-site proposed which covers 430 thousand years and 5 glacial-interglacial cycles (Spanish project “TORE5deglaciations”, CTM2017-84113-R, 2018-2020).</p>


Science ◽  
1981 ◽  
Vol 213 (4505) ◽  
pp. 329-331 ◽  
Author(s):  
W. D. GARDNER ◽  
L. G. SULLIVAN

Sign in / Sign up

Export Citation Format

Share Document