Chronic effects of a high-frequency stimulus on the structure and function of the cochlea.

1955 ◽  
Vol 49 (5) ◽  
pp. 363-366
Author(s):  
Irving E. Alexander ◽  
Frederick J. Githler
2021 ◽  
Vol 8 ◽  
Author(s):  
Marta Szymoniak-Lipska ◽  
Adriana Polańska ◽  
Dorota Jenerowicz ◽  
Adam Lipski ◽  
Ryszard Żaba ◽  
...  

Background: The nail unit (NU) is a complex structure that performs a number of functions, including protection, defense, manipulation, and palpation. Non-invasive research methods can facilitate the recognition of NU structure and function. Evaporimetry and HF-USG due to their availability of equipment and low research costs seem to be particularly noteworthy, but so far have been assessed to a limited extent. The aim of the presented study was to check the usefulness of TOWL and HF-USG in examination of NU.Materials and Methods: A total of 58 volunteers aged 25–65 years (mean age: 41 ± 10.16 years) were qualified for the study. The subjects did not present symptoms of clinically evident onychopathy and did not suffer from any dermatoses associated with lesions occurring within the NU. Additionally, the patients did not suffer from systemic diseases that could affect NU (including heart, lung, and endocrine diseases). In all volunteers, the measurement of TOWL and 20 MHz ultrasonography [high-frequency ultrasonography (HF-USG)] with the special emphasis on determination of nail plate thickness were performed.Results: Analysis of 464 HF-USG images revealed that the nail plate presented as two hyperechoic, parallel streaks (railway sign) with a linear hypoechoic middle layer between them. Matrix was visualized as a hypoechoic structure with blurred boundaries, mostly within the fourth and fifth fingers and more often in women. We found statistically significant correlations between the type of a finger and the thickness of the nail plate both in the entire study group and taking into account gender. In the dominant hand, the results were r = −0.341; p < 0.001; r = −0.417, p < 0.001; and r = 0.337; p = 0.001 (for the whole group, for women, and for men, respectively). In the non-dominant hand, the results were r = −0.465; p < 0.001; r = −0.493, p < 0.01; and r = −0.503; p < 0.01 (for the whole group, for women, and for men, respectively). There were statistically significant differences in the thickness of the nail plates of the corresponding types of fingers between female and male NUs. Statistically significant correlations were found between the type of a finger and the TOWL value in the whole group and taking into account gender (p < 0.05), except for the non-dominant hand in men. There were no statistically significant differences in the TOWL values of the corresponding types of fingers between male and female NUs (p > 0.05). There was no statistically significant correlation between the TOWL value and the nail plate thickness in any of the tested NUs, apart from the one statistically significant correlation in nd5 (r = 0.390, p = 0.021).Conclusions: To sum up, non-invasive methods, such as HF-USG and TOWL, enable assessment of the NU and are useful in examination of its structure and function. HF-USG shows characteristic elements of NUs that can be distinguished because of differences in their echogenicity. The thickness of the nail plate and TOWL depend on the type of finger, and show a relationship with gender.


2011 ◽  
Vol 116 (1) ◽  
pp. 676-682 ◽  
Author(s):  
Ruchira Chatterjee ◽  
Christopher S. Coates ◽  
Sergey Milikisiyants ◽  
Oleg G. Poluektov ◽  
K. V. Lakshmi

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Sign in / Sign up

Export Citation Format

Share Document