scholarly journals Tumor formation of prostate cancer cells influenced by stromal cells from the transitional or peripheral zones of the normal prostate

2009 ◽  
Vol 11 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Fu-Jun Zhao ◽  
Bang-Min Han ◽  
Sheng-Qiang Yu ◽  
Shu-Jie Xia
2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


2021 ◽  
pp. 1-9
Author(s):  
Yuxin Li ◽  
Xiaohong Zhuang ◽  
Li Zhuang ◽  
Hongjian Liu

This paper aimed at investigating AS1 expression in prostate cancer (PCa) and its effects on the proliferation and invasion of prostate cancer cells (PCCs). The prostate tissues and the matched adjacent normal prostate tissues excised and preserved during radical prostatectomy in our hospital were collected. The LncRNA NCK1-AS1 expression was detected. PCa patients were followed up for three years to analyze their prognosis. The correlation of LncRNA NCK1-AS1 expression with clinicopathological features was analyzed. Human normal prostate cells and human PCCs were selected, in which LncRNA NCK1-AS1 expression was tested to screen and then transfect the cells. Cell proliferation, invasion and migration were detected. Cell cycles and apoptosis were analyzed. Compared with the adjacent normal tissues, LncRNA NCK1-AS1 was highly expressed in the prostate cancer tissues. Its expression was remarkably different in those with different stages of TNM and with lymphatic metastasis or not. The prognosis of patients with high LncRNA NCK1-AS1 expression was remarkably poorer than that of those with low expression. Compared with the human normal prostate cells, LncRNA NCK1-AS1 expression in the human PCCs remarkably rose, with the greatest difference in 22Rv1 cells. Compared with the Blank group, cell proliferation and the number of plate cloned cells remarkably reduced in the sh-NCK1-AS1 group. Additionally, in this group, the number of invasive and migratory cells remarkably reduced; the expression of invasion-related protein E-cadherin remarkably rose but that of MMP-2 remarkably reduced; cell cycles were arrested and the expression of cycle-related proteins (CDK4, CDK6, cyclin D1) remarkably reduced; the apoptotic rate and the expression of apoptosis-related protein Bax remarkably rose. LncRNA NCK1-AS1 is highly expressed in PCa, so its down-regulation can inhibit PCCs from proliferating and reduce the number of invasive cells.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qi Li ◽  
Mulun Xiao ◽  
Yibo Shi ◽  
Jinhao Hu ◽  
Tianxiang Bi ◽  
...  

Abstract Background Eukaryotic translation initiation factors (eIFs) are the key factors to synthesize translation initiation complexes during the synthesis of eukaryotic proteins. Besides, eIFs are especially important in regulating the immune function of tumor cells. However, the effect mechanism of eIFs in prostate cancer remains to be studied, which is precisely the purpose of this study. Methods In this study, three groups of prostate cancer cells were investigated. One group had its eIF5B gene knocked down; another group had its Programmed death 1 (PD-L1) overexpressed; the final group had its Wild-type p53-induced gene 1 (Wig1) overexpressed. Genetic alterations of the cancer cells were performed by plasmid transfection. The expression of PD-L1 mRNA was detected by quantitative real-time PCR (qRT-PCR), and the expressions of PD-L1 and eIF5B proteins were observed by western blot assays. Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell and Transwell martrigel were used to investigated cell proliferation, apoptosis, migration and invasion, respectively. The effect of peripheral blood mononuclear cells (PBMCs) on tumor cells was observed, and the interaction between eIF5B and Wig1 was revealed by co-immunoprecipitation (CoIP) assay. Finally, the effects of interference with eIF5B expression on the growth, morphology, and immunity of the tumor, as well as PD-L1 expression in the tumor, were verified by tumor xenograft assays in vivo. Results Compared with normal prostate epithelial cells, prostate cancer cells revealed higher expressions of eIF5B and PD-L1 interference with eIF-5B expression can inhibit the proliferation, migration, invasion and PD-L1 expression of prostate cancer cells. Meanwhile, the cancer cell group with interference with eIF5B expression also demonstrated greater, apoptosis and higher vulnerability to PBMCs. CoIP assays showed that Wig1 could bind to eIF5B in prostate cancer cells, and its overexpression can inhibit the proliferation, migration, invasion and PD-L1 expression of cancer cells while promoting apoptosis. Moreover, interference with eIF5B expression can inhibit tumor growth, destroy tumor morphology, and suppress the proliferation of tumor cells. Conclusion eIF5B can promote the expression of PD-L1 by interacting with Wig1. Besides, interference with eIF5B expression can inhibit the proliferation, migration, invasion and immunosuppressive response of prostate cancer cells. This study proposes a new target, eIF5B, for immunotherapy of prostate cancer.


2018 ◽  
Vol 46 (07) ◽  
pp. 1625-1643 ◽  
Author(s):  
Hung-En Chen ◽  
Ji-Fan Lin ◽  
Te-Fu Tsai ◽  
Yi-Chia Lin ◽  
Kuang-Yu Chou ◽  
...  

Allyl isothiocyanate (AITC), one of the most widely studied phytochemicals, inhibits the survival of human prostate cancer cells while minimally affecting normal prostate epithelial cells. Our study demonstrates the mechanism of AITC-induced cell death in prostate cancer cells. AITC induces autophagy in RV1 and PC3 cells, judging from the increased level of LC3-II protein in a dose- and time-dependent manner, but not in the normal prostate epithelial cell (PrEC). Inhibition of autophagy in AITC-treated cells decreased cell viability and enhanced apoptosis, suggesting that the autophagy played a protective role. There are several pathways activated in ATIC-treated cells. We detected the phosphorylation forms of mTOR, ERK, AMPK, JNK and p38, and ERK AMPK and JNK activation were also detected. However, inhibition of AITC-activated ERK, AMPK and JNK by pre-treatment of specific inhibitors did not alter autophagy induction. Finally, increased beclin-1 expression was detected in AITC-treated cells, and inhibition of AITC-induced beclin-1 attanuated autophagy induction, indicating that AITC-induced autophagy occurs through upregulating beclin-1. Overall, our data show for the first time that AITC induces protective autophagy in Rv1 and PC3 cells through upregulation of beclin-1. Our results could potentially contribute to a therapeutic application of AITC in prostate cancer patients.


Author(s):  
Qiang Fu ◽  
Zhenye Sun ◽  
Fan Yang ◽  
Tianci Mao ◽  
Yanyao Gao ◽  
...  

Abstract Background Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. Methods Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA–mRNA interaction was validated using the dual-luciferase reporter assay. Results SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. Conclusions These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p–SOX30–Wnt/β-catenin signaling axis in prostate cancer progression.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 297-297 ◽  
Author(s):  
Chun-Peng Liao ◽  
Leng-Ying Chen ◽  
Andrea Luethy ◽  
Youngsoo Kim ◽  
A. Robert MacLeod ◽  
...  

297 Background: Interactions between epithelial and stroma cells are important in the development of prostate cancer (PCa). Cancer-associated fibroblasts (CAFs) have been to support tumor progression, metastasis, and differentiation. Androgen receptor (AR) and related pathways are known to support the growth and survival of prostate epithelial cancer cells, the roles of AR-dependent processes in cancerous stroma are less clear. We sought to investigate if AR-dependent pathways present in CAF cells influence the growth and tumorogencity of epithelial cancer cells in relation to androgen-deprivation therapy in prostate cancer. Methods: Murine CAFs were isolated from a well-described PTEN-dependent cancer mouse model (Liao, et al Cancer Res, 2010. 70(18):7294). A co-culture system was developed based on multiple lines of murine CAFs grown along with human prostate cancer epithelial cells, and a murine-specific anti-sense oligonucleotide (ASO) against murine AR was used to specifically suppress AR expression in murine CAFs in this system. RT-PCR was used to investigate changes in gene expression. Results: Using this co-culture system, we found that murine CAFs promoted cell proliferation and colony formation in several human prostate cancer cell lines. Further, these processes were decreased by suppression of AR-expression in CAFs. Expression of genes related to tumorigenicity in epithelial cells were investigated. Markers associated with epithelial-mesenchymal transition (EMT, N-Cad) and “stemness” (OCT4, Sox2, Nanog) were increased in human prostate cancer cells grown with low-AR CAFs. Conclusions: Our data indicates that suppression of AR in CAFs results in down-regulation in the growth and tumorigenicity of prostate cancer cells through pathways related to EMT and “cell reprograming”. As such, development of therapies which inhibit the tumor-promoting pathways present in stromal cells may be one approach to improve the treatment of prostate cancer.


2010 ◽  
Vol 183 (4S) ◽  
Author(s):  
Lin Yu ◽  
Jiandang Shi ◽  
Chunyu Wang ◽  
Helmut Klocker ◽  
Doris Mayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document