scholarly journals Platelet-derived growth factor (PDGF) in neoplastic and non-neoplastic cystic lesions of the central nervous system and in the cerebrospinal fluid

1994 ◽  
Vol 69 (5) ◽  
pp. 952-956 ◽  
Author(s):  
M Nistér ◽  
P Enblad ◽  
G Bäckström ◽  
T Söderman ◽  
L Persson ◽  
...  
Cell ◽  
1988 ◽  
Vol 53 (2) ◽  
pp. 309-319 ◽  
Author(s):  
William D. Richardson ◽  
Nigel Pringle ◽  
Michael J. Mosley ◽  
Bengt Westermark ◽  
Monique Dubois-Dalcg

2018 ◽  
Author(s):  
Sara Calabretta ◽  
Gillian Vogel ◽  
Zhenbao Yu ◽  
Karine Choquet ◽  
Lama Darbelli ◽  
...  

SummaryPlatelet derived growth factor receptor α (PDGFRα) signaling is required for proliferation, commitment and maintenance of oligodendrocyte (OL) precursor cells (OPCs). PDGFRα signaling promotes OPC homeostasis and its attenuation signals OPC differentiation and maturation triggering the onset of myelination of the central nervous system (CNS). The initial steps of how PDGFRα signaling is attenuated are still poorly understood. Herein we show that decreased Protein Arginine MethylTransferase5 (PRMT5) expression, as occurs during OPC differentiation, is involved in the down-regulation of PDGFRα by modulating its cell surface bioavailability leading to its degradation in a Cbldependent manner. Mechanistically, loss of arginine methylation at R554 of the PDGFRα intracellular domain reveals a masked Cbl binding site at Y555. Physiologically, depletion of PRMT5 in OPCs results in severe CNS myelination defects. We propose that decreased PRMT5 activity initiates PDGFRα degradation to promote OL differentiation. More broadly, inhibition of PRMT5 may be used therapeutically to manipulate PDGFRα bioavailability.


2000 ◽  
Vol 278 (5) ◽  
pp. R1275-R1281 ◽  
Author(s):  
Irene R. Pelá ◽  
Márcia E. S. Ferreira ◽  
Miriam C. C. Melo ◽  
Carlos A. A. Silva ◽  
Márcio M. Coelho ◽  
...  

Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory actions in the mammalian central nervous system (CNS). Like the cytokines, PDGF primarily signals through tyrosine phosphorylation-dependent pathways that activate multiple intracellular molecules including Janus family kinases. We previously showed that microinjection of PDGF-BB into the lateral ventricle induced a febrile response in rats that was reduced by pretreatment with Win 41662, a potent inhibitor of PDGF receptors (Pelá IR, Ferreira MES, Melo MCC, Silva CAA, and Valenzuela CF. Ann NY Acad Sci 856: 289–293, 1998). In this study, we further characterized the role of PDGF-BB in the febrile response in rats. Microinjection of PDGF-BB into the third ventricle produced a dose-dependent increase in colonic temperature that peaked 3–4 h postinjection. Win 41662 attenuated fever induced by intraperitoneal injection of bacterial lipopolysaccharide, suggesting that endogenous PDGF participates in the febrile response to this exogenous pyrogen. Importantly, febrile responses induced by tumor necrosis factor-α, interleukin-1β, and interleukin-6 were unchanged by Win 41662. Both indomethacin and dexamethasone blocked the PDGF-BB-induced increase in colonic temperature, and, therefore, we postulate that PDGF-BB may act via prostaglandin- and/or inducible enzyme-dependent pathways. Thus our findings suggest that PDGF-BB is an endogenous CNS mediator of the febrile response in rats.


Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 300
Author(s):  
Petr Kelbich ◽  
Aleš Hejčl ◽  
Jan Krejsek ◽  
Tomáš Radovnický ◽  
Inka Matuchová ◽  
...  

Extravasation of blood in the central nervous system (CNS) represents a very strong damaged associated molecular patterns (DAMP) which is followed by rapid inflammation and can participate in worse outcome of patients. We analyzed cerebrospinal fluid (CSF) from 139 patients after the CNS hemorrhage. We compared 109 survivors (Glasgow Outcome Score (GOS) 5-3) and 30 patients with poor outcomes (GOS 2-1). Statistical evaluations were performed using the Wilcoxon signed-rank test and the Mann–Whitney U test. Almost the same numbers of erythrocytes in both subgroups appeared in days 0–3 (p = 0.927) and a significant increase in patients with GOS 2-1 in days 7–10 after the hemorrhage (p = 0.004) revealed persistence of extravascular blood in the CNS as an adverse factor. We assess 43.3% of patients with GOS 2-1 and only 27.5% of patients with GOS 5-3 with low values of the coefficient of energy balance (KEB < 15.0) in days 0–3 after the hemorrhage as a trend to immediate intensive inflammation in the CNS of patients with poor outcomes. We consider significantly higher concentration of total protein of patients with GOS 2-1 in days 0–3 after hemorrhage (p = 0.008) as the evidence of immediate simultaneously manifested intensive inflammation, swelling of the brain and elevation of intracranial pressure.


Sign in / Sign up

Export Citation Format

Share Document