scholarly journals Differential effects of high MUFA with high or low P/S ratio (polyunsaturated to saturated fatty acids) on improving hepatic lipolytic enzymes and mediating PPARγ related with lipoprotein lipase and hormone-sensitive lipase of white adipose tissue in diet-induced obese hamster

2010 ◽  
Vol 34 (11) ◽  
pp. 1608-1617 ◽  
Author(s):  
F-H Liao ◽  
T-H Liou ◽  
W-C Chiu ◽  
M-J Shieh ◽  
Y-W Chien
1992 ◽  
Vol 262 (2) ◽  
pp. R177-R181 ◽  
Author(s):  
B. E. Wilson ◽  
S. Deeb ◽  
G. L. Florant

White adipose tissue (WAT) and plasma samples were obtained from yellow-bellied marmots (Marmota flaviventris) throughout the year. Mean plasma triacylglycerol (TG), free fatty acids (FFAs), and glycerol were determined. There was a clear increase in FFAs and decrease in mean TG and glycerol during the hibernation period when animals were fasting, suggesting increased lipolysis. RNA was isolated from WAT biopsies at four times in the year: spring, summer, fall, and winter. There were significant changes in the relative levels of mRNA for lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) during the body mass cycle of the marmot. The relative levels of LPL mRNA are high during the mass gain phase of the year and that of HSL mRNA are high during the fasting period when endogenous lipid is utilized. These results suggest that the genes for LPL and HSL are regulated seasonally to control the adipose mass depot in marmots.


2004 ◽  
Vol 287 (2) ◽  
pp. E282-E288 ◽  
Author(s):  
Mélanie Fortier ◽  
Shu Pei Wang ◽  
Pascale Mauriège ◽  
Meriem Semache ◽  
Léandra Mfuma ◽  
...  

In white adipose tissue, lipolysis can occur by hormone-sensitive lipase (HSL)-dependent or HSL-independent pathways. To study HSL-independent lipolysis, we placed HSL-deficient mice in conditions of increased fatty acid flux: β-adrenergic stimulation, fasting, and dietary fat loading. Intraperitoneal administration of the β3-adrenergic agonist CL-316243 caused a greater increase in nonesterified fatty acid level in controls (0.33 ± 0.05 mmol/l) than in HSL−/− mice (0.12 ± 0.01 mmol/l, P < 0.01). Similarly, in isolated adipocytes, lipolytic response to CL-316243 was greatly reduced in HSL−/− mice compared with controls. Fasting for ≤48 h produced normal mobilization and oxidation of fatty acids in HSL−/− mice, as judged by similar values of respiratory quotient and oxygen consumption as in HSL+/+ controls. In isolated adipocytes, lipolysis in the absence of β-adrenergic stimulation was 1.9-fold greater in HSL−/− than in HSL+/+ cells ( P < 0.05), increasing to 6.5-fold after fasting ( P < 0.01). After 6 wk of a fat-rich diet containing 31.5% of energy as lipid, weight gain of HSL−/− mice was 4.4-fold less than in HSL+/+ mice ( P < 0.01), and total abdominal fat mass was 5.2-fold lower in HSL−/− than in HSL+/+ mice ( P < 0.01). In white adipose tissue, HSL is essential for normal acute β-adrenergic-stimulated lipolysis and permits normal triglyceride storage capacity in response to dietary fat loading. However, HSL-independent lipolysis can markedly increase during fasting, both in isolated adipocytes and in intact mice, and can mediate a normal flux of fatty acids during fasting.


2000 ◽  
Vol 59 (3) ◽  
pp. 441-446 ◽  
Author(s):  
J. S. Samra

Adipose tissue is a major source of metabolic fuel. This metabolic fuel is stored in the form of triacylglycerol. Lipolysis of triacylglycerol yields non-esterified fatty acids and glycerol. In human subjects in vivo studies of the regulation of lipid metabolism in adipose tissue have been difficult because of the heterogeneous nature of the tissue and lack of a vascular pedicle. In the last decade the methodology of study of adipose tissue has improved with the advent of the anterior abdominal wall adipose tissue preparation technique and microdialysis. These techniques have demonstrated that lipid metabolism in adipose tissue is finely coordinated during feeding and fasting cycles, in order to provide metabolic fuel when required. Lipolysis takes place both in extracellular and intracellular space. The extracellular lipolysis is regulated by lipoprotein lipase and the intracellular lipolysis is regulated by hormone-sensitive lipase. In pathophysiological conditions such as trauma, sepsis and starvation profound changes are induced in the regulation of lipid metabolism. The increased mobilization of lipid fuel is brought about by the differential actions of various counter-regulatory hormones on adipose tissue blood flow and adipose tissue lipolysis through lipoprotein lipase and hormone-sensitive lipase, resulting in increased availability of non-esterified fatty acids as a source of fuel. In recent years, it has been demonstrated that adipose tissue produces various cytokines and these cytokines can have paracrine and endocrine effects. It would appear that adipose tissue has the ability to regulate lipid metabolism locally as well as at distant sites such as liver, muscle and brain. In future, it is likely that the mechanisms that lead to the secondary effects of lipid metabolism on atheroma, immunity and carcinogenesis will be demonstrated.


1996 ◽  
Vol 271 (5) ◽  
pp. E834-E839 ◽  
Author(s):  
J. S. Samra ◽  
E. J. Simpson ◽  
M. L. Clark ◽  
C. D. Forster ◽  
S. M. Humphreys ◽  
...  

Epinephrine has effects on both blood flow and metabolism in adipose tissue. To investigate how these effects might interact in vivo, epinephrine was infused into six healthy volunteers at a rate of 25 ng.kg-1.min-1. The rates of action of lipoprotein lipase and hormone-sensitive lipase in adipose tissue were calculated by measurement of arteriovenous differences across subcutaneous abdominal adipose tissue, and adipose tissue blood flow was measured. Epinephrine caused a significant rise in adipose tissue blood flow (P < 0.001), and the net efflux of nonesterified fatty acids (NEFA) from adipose tissue increased significantly (P < 0.05). Most of this efflux could be accounted for by hormone-sensitive lipase-derived NEFA efflux from cells (P < 0.05), but there was also a significant rise in the contribution of lipoprotein lipase-derived NEFA (P < 0.05). We conclude that adipose tissue blood flow plays an important role in the regulation of lipid metabolism, controlling substrate presentation for lipoprotein lipase and also preventing the local accumulation of fatty acids derived from both hormone-sensitive lipase and lipoprotein lipase.


1998 ◽  
Vol 83 (2) ◽  
pp. 626-631 ◽  
Author(s):  
Jaswinder S. Samra ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
Ian A. MacDonald ◽  
Peter A. Bannister ◽  
...  

Cortisol is known to increase whole body lipolysis, yet chronic hypercortisolemia results in increased fat mass. The main aim of the study was to explain these two apparently opposed observations by examining the acute effects of hypercortisolemia on lipolysis in subcutaneous adipose tissue and in the whole body. Six healthy subjects were studied on two occasions. On one occasion hydrocortisone sodium succinate was infused iv to induce hypercortisolemia (mean plasma cortisol concentrations, 1500 ± 100 vs. 335± 25 nmol/L; P &lt; 0.001); on the other occasion (control study) no intervention was made. Lipolysis in the sc adipose tissue of the anterior abdominal wall was studied by measurement of arterio-venous differences, and lipolysis in the whole body was studied by constant infusion of[ 1,2,3-2H5]glycerol for measurement of the systemic glycerol appearance rate. Hypercortisolemia led to significantly increased arterialized plasma nonesterified fatty acid (NEFA; P &lt; 0.01) and blood glycerol concentrations (P &lt; 0.05), with an increase in systemic glycerol appearance (P &lt; 0.05). However, in sc abdominal adipose tissue, hypercortisolemia decreased veno-arterialized differences for NEFA (P &lt; 0.05) and reduced NEFA efflux (P &lt; 0.05). This reduction was attributable to decreased intracellular lipolysis (P &lt; 0.05), reflecting decreased hormone-sensitive lipase action in this adipose depot. Hypercortisolemia caused a reduction in arterialized plasma TAG concentrations (P &lt; 0.05), but without a significant change in the local extraction of TAG (presumed to reflect the action of adipose tissue lipoprotein lipase). There was no significant difference in plasma insulin concentrations between the control and hypercortisolemia study. Site-specific regulation of the enzymes of intracellular lipolysis (hormone-sensitive lipase) and intravascular lipolysis (lipoprotein lipase) may explain the ability of acute cortisol treatment to increase systemic glycerol and NEFA appearance rates while chronically promoting net central fat deposition.


1976 ◽  
Vol 230 (2) ◽  
pp. 385-388 ◽  
Author(s):  
JA McGarr ◽  
LB Oscai ◽  
J Borensztajn

Hormone-sensitive lipase activity was measured in adipocytes of rats subjected to a 12-wk program of treadmill running. Enzyme activity in the runners sacrificed immediately after exercise increased 2.5-fold (P less than 0.001) in tissue exposed to epinephrine and threefold (P less than 0.001) in tissue not exposed to epinephrine, when the results were expressed per gram of adipose tissue. Increases of almost the same magnitude were observed in runners sacrificed 24 h after their last bout of work. These significant increases in enzyme activity, however, were the result of a significant reduction in the size of cells in the epididymal fat pads of the exercisers compared with those of the freely eating sedentary animals (68.7 +/- 2.7 mum vs. 82.0 +/- 2.7 mum; P less than 0.01). When the results were expressed on a per-cell basis, therefore, hormone-sensitive lipase activity, assayed in the presence or absence of epinephrine, was unaffected by the exercise program. These results provide evidence that the lipolytic capacity of adipocytes of normal, untrained rats is sufficiently large to meet the increased demand for free fatty acids imposed by the exercise program without the need for an adaptive increase in enzyme activity.


1997 ◽  
Vol 17 (10) ◽  
pp. 2287-2292 ◽  
Author(s):  
Signy Reynisdottir ◽  
Bo Angelin ◽  
Dominique Langin ◽  
Hans Lithell ◽  
Mats Eriksson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document