scholarly journals Adipose Tissue Lipoprotein Lipase and Hormone-Sensitive Lipase

1997 ◽  
Vol 17 (10) ◽  
pp. 2287-2292 ◽  
Author(s):  
Signy Reynisdottir ◽  
Bo Angelin ◽  
Dominique Langin ◽  
Hans Lithell ◽  
Mats Eriksson ◽  
...  
1998 ◽  
Vol 83 (2) ◽  
pp. 626-631 ◽  
Author(s):  
Jaswinder S. Samra ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
Ian A. MacDonald ◽  
Peter A. Bannister ◽  
...  

Cortisol is known to increase whole body lipolysis, yet chronic hypercortisolemia results in increased fat mass. The main aim of the study was to explain these two apparently opposed observations by examining the acute effects of hypercortisolemia on lipolysis in subcutaneous adipose tissue and in the whole body. Six healthy subjects were studied on two occasions. On one occasion hydrocortisone sodium succinate was infused iv to induce hypercortisolemia (mean plasma cortisol concentrations, 1500 ± 100 vs. 335± 25 nmol/L; P < 0.001); on the other occasion (control study) no intervention was made. Lipolysis in the sc adipose tissue of the anterior abdominal wall was studied by measurement of arterio-venous differences, and lipolysis in the whole body was studied by constant infusion of[ 1,2,3-2H5]glycerol for measurement of the systemic glycerol appearance rate. Hypercortisolemia led to significantly increased arterialized plasma nonesterified fatty acid (NEFA; P < 0.01) and blood glycerol concentrations (P < 0.05), with an increase in systemic glycerol appearance (P < 0.05). However, in sc abdominal adipose tissue, hypercortisolemia decreased veno-arterialized differences for NEFA (P < 0.05) and reduced NEFA efflux (P < 0.05). This reduction was attributable to decreased intracellular lipolysis (P < 0.05), reflecting decreased hormone-sensitive lipase action in this adipose depot. Hypercortisolemia caused a reduction in arterialized plasma TAG concentrations (P < 0.05), but without a significant change in the local extraction of TAG (presumed to reflect the action of adipose tissue lipoprotein lipase). There was no significant difference in plasma insulin concentrations between the control and hypercortisolemia study. Site-specific regulation of the enzymes of intracellular lipolysis (hormone-sensitive lipase) and intravascular lipolysis (lipoprotein lipase) may explain the ability of acute cortisol treatment to increase systemic glycerol and NEFA appearance rates while chronically promoting net central fat deposition.


1992 ◽  
Vol 262 (2) ◽  
pp. R177-R181 ◽  
Author(s):  
B. E. Wilson ◽  
S. Deeb ◽  
G. L. Florant

White adipose tissue (WAT) and plasma samples were obtained from yellow-bellied marmots (Marmota flaviventris) throughout the year. Mean plasma triacylglycerol (TG), free fatty acids (FFAs), and glycerol were determined. There was a clear increase in FFAs and decrease in mean TG and glycerol during the hibernation period when animals were fasting, suggesting increased lipolysis. RNA was isolated from WAT biopsies at four times in the year: spring, summer, fall, and winter. There were significant changes in the relative levels of mRNA for lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) during the body mass cycle of the marmot. The relative levels of LPL mRNA are high during the mass gain phase of the year and that of HSL mRNA are high during the fasting period when endogenous lipid is utilized. These results suggest that the genes for LPL and HSL are regulated seasonally to control the adipose mass depot in marmots.


1998 ◽  
Vol 38 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Muriel Bonnet ◽  
Yannick Faulconnier ◽  
Jeanne Fléchet ◽  
Jean-François Hocquette ◽  
Christine Leroux ◽  
...  

1995 ◽  
Vol 211 (3) ◽  
pp. 761-766 ◽  
Author(s):  
M. Shimada ◽  
S. Ishibashi ◽  
K. Yamamoto ◽  
M. Kawamura ◽  
Y. Watanabe ◽  
...  

1996 ◽  
Vol 270 (2) ◽  
pp. E215-E223 ◽  
Author(s):  
C. Sztalryd ◽  
J. Hamilton ◽  
B. A. Horwitz ◽  
P. Johnson ◽  
F. B. Kraemer

These studies examined the cellular mechanisms for lower adiposity seen with nicotine ingestion. Rats were infused with nicotine or saline for 1 wk and adipocytes isolated from epididymal fat pads. Nicotine-infused rats gained 37% less weight and had 21% smaller fat pads. Basal lipolysis was 78% higher, whereas the maximal lipolytic response to isoproterenol was blunted in adipocytes from nicotine-infused rats. The antilipolytic actions of adenosine and the levels of serum catecholamines were unaffected by nicotine. The nicotine-induced alteration in lipolysis was not associated with any changes in hormone-sensitive lipase. Nicotine caused a 30% decrease in lipoprotein lipase (LPL) activity, without any changes in LPL mass or mRNA levels, in epididymal fat in the fed state. In contrast, LPL activity, mass, and mRNA levels in heart were increased by nicotine whether animals were fed or fasted. These studies provide evidence for multiple mechanistic events underlying nicotine-induced alterations in weight and suggest that nicotine diverts fat storage away from adipose tissue and toward utilization by muscle.


2000 ◽  
Vol 59 (3) ◽  
pp. 441-446 ◽  
Author(s):  
J. S. Samra

Adipose tissue is a major source of metabolic fuel. This metabolic fuel is stored in the form of triacylglycerol. Lipolysis of triacylglycerol yields non-esterified fatty acids and glycerol. In human subjects in vivo studies of the regulation of lipid metabolism in adipose tissue have been difficult because of the heterogeneous nature of the tissue and lack of a vascular pedicle. In the last decade the methodology of study of adipose tissue has improved with the advent of the anterior abdominal wall adipose tissue preparation technique and microdialysis. These techniques have demonstrated that lipid metabolism in adipose tissue is finely coordinated during feeding and fasting cycles, in order to provide metabolic fuel when required. Lipolysis takes place both in extracellular and intracellular space. The extracellular lipolysis is regulated by lipoprotein lipase and the intracellular lipolysis is regulated by hormone-sensitive lipase. In pathophysiological conditions such as trauma, sepsis and starvation profound changes are induced in the regulation of lipid metabolism. The increased mobilization of lipid fuel is brought about by the differential actions of various counter-regulatory hormones on adipose tissue blood flow and adipose tissue lipolysis through lipoprotein lipase and hormone-sensitive lipase, resulting in increased availability of non-esterified fatty acids as a source of fuel. In recent years, it has been demonstrated that adipose tissue produces various cytokines and these cytokines can have paracrine and endocrine effects. It would appear that adipose tissue has the ability to regulate lipid metabolism locally as well as at distant sites such as liver, muscle and brain. In future, it is likely that the mechanisms that lead to the secondary effects of lipid metabolism on atheroma, immunity and carcinogenesis will be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document