scholarly journals Critical Role of 5-Lipoxygenase and Heme Oxygenase-1 in Wound Healing

2014 ◽  
Vol 134 (5) ◽  
pp. 1436-1445 ◽  
Author(s):  
Ariane R. Brogliato ◽  
Andrea N. Moor ◽  
Shannon L. Kesl ◽  
Rafael F. Guilherme ◽  
Janaína L. Georgii ◽  
...  
2018 ◽  
Vol 20 (1) ◽  
pp. 39 ◽  
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


2009 ◽  
Vol 7 (11) ◽  
pp. 1745-1755 ◽  
Author(s):  
Geraldine Gueron ◽  
Adriana De Siervi ◽  
Mercedes Ferrando ◽  
Marcelo Salierno ◽  
Paola De Luca ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 181 ◽  
Author(s):  
Heather A. Drummond ◽  
Zachary L. Mitchell ◽  
Nader G. Abraham ◽  
David E. Stec

Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.


2010 ◽  
Vol 104 (09) ◽  
pp. 424-431 ◽  
Author(s):  
Anna Grochot-Przeczek ◽  
Jozef Dulak ◽  
Alicja Jozkowicz

SummaryNeovascularisation is crucial both for physiological processes, like development, wound healing, tissue regeneration, hair growth or menstrual cycle, and for pathological states, such as tumour progression, retinopathy and psoriasis. Blood vessel formation is orchestrated by numerous pro-angiogenic and anti-angiogenic factors, acting together to keep tight rein on this complicated, desirable but also dangerous process. One of the proteins important for neovascularisation is heme oxygenase-1 (HO-1), an enzyme degrading heme. This review focuses on the role of HO-1 in angiogenesis and vasculogenesis, having a closer look at the significance of this system in diabetes.


Author(s):  
Agata Szade ◽  
Krzysztof Szade ◽  
Mahdi Mahdi ◽  
Alicja Józkowicz

AbstractHematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)—an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 306
Author(s):  
Maxime Rossi ◽  
Kéziah Korpak ◽  
Arnaud Doerfler ◽  
Karim Zouaoui Boudjeltia

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.


2005 ◽  
Vol 327 (4) ◽  
pp. 1066-1071 ◽  
Author(s):  
Byung-Min Choi ◽  
Hyun-Ock Pae ◽  
Young-Ran Jeong ◽  
Young-Myeong Kim ◽  
Hun-Taeg Chung

2018 ◽  
Vol 24 (20) ◽  
pp. 2283-2302 ◽  
Author(s):  
Vivian B. Neis ◽  
Priscila B. Rosa ◽  
Morgana Moretti ◽  
Ana Lucia S. Rodrigues

Heme oxygenase (HO) family catalyzes the conversion of heme into free iron, carbon monoxide and biliverdin. It possesses two well-characterized isoforms: HO-1 and HO-2. Under brain physiological conditions, the expression of HO-2 is constitutive, abundant and ubiquitous, whereas HO-1 mRNA and protein are restricted to small populations of neurons and neuroglia. HO-1 is an inducible enzyme that has been shown to participate as an essential defensive mechanism for neurons exposed to oxidant challenges, being related to antioxidant defenses in certain neuropathological conditions. Considering that neurodegenerative diseases (Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Multiple Sclerosis (MS)) and neuropsychiatric disorders (depression, anxiety, Bipolar Disorder (BD) and schizophrenia) are associated with increased inflammatory markers, impaired redox homeostasis and oxidative stress, conditions that may be associated with alterations in HO-levels/activity, the purpose of this review is to present evidence on the possible role of HO-1 in these Central Nervous System (CNS) diseases. In addition, the possible therapeutic potential of targeting brain HO-1 is explored in this review.


2017 ◽  
Vol 18 (6) ◽  
pp. 674-686 ◽  
Author(s):  
Aleksandra Piechota-Polanczyk ◽  
Alicja Jozkowicz

Sign in / Sign up

Export Citation Format

Share Document