scholarly journals In Vivo Selection Against Human Colorectal Cancer Xenografts Identifies an Aptamer That Targets RNA Helicase Protein DHX9

2016 ◽  
Vol 5 ◽  
pp. e315 ◽  
Author(s):  
Jing Mi ◽  
Partha Ray ◽  
Jenny Liu ◽  
Chien-Tsun Kuan ◽  
Jennifer Xu ◽  
...  
2018 ◽  
Vol 31 (03) ◽  
pp. 199-204 ◽  
Author(s):  
Judith Sebolt-Leopold

AbstractThe establishment and validation of preclinical models that faithfully recapitulate the pathogenesis and treatment response of human colorectal cancer (CRC) is critical to expedient therapeutic advances in the clinical management of this disease. Integral to the application of precision medicine for patients diagnosed with metastatic CRC is the need to understand the molecular determinants of response for a given therapy. Preclinical models of CRC have proven invaluable in answering many of our basic questions relating to the molecular aberrations that drive colorectal tumor progression. This review will address the comparative merits and limitations of the broad spectrum of in vitro and in vivo models available for study of colorectal tumors and their response to experimental therapies.


1992 ◽  
Vol 7 (3) ◽  
pp. 203-209 ◽  
Author(s):  
N. Hardman ◽  
B. Murray ◽  
M. Zwickl ◽  
F. Kolbinger ◽  
G. Pluschke

Hitherto anti-CEA monoclonal antibodies (MAbs), normally of mouse origin, have been used primarily for clinical diagnosis of colorectal cancer, either as a tumor marker in serum to monitor tumor recurrence, or latterly as a means to localize in vivo CEA-bearing tumors and metastases in patients. In vivo diagnosis using mouse anti-CEA MAbs has so far had limited clinical utility because the antibodies elicit a strong anti-mouse immunoglobulin immune response on repeated administration in man. This problem has been addressed by the development of various strategies for “humanization” of mouse anti-CEA MAbs by genetic manipulation of immunoglobulin genes. Such humanized, engineered antibodies markedly attenuate the antigenic response directed against the MAb, such that safe, repeated administration to patients has become feasible. Such humanized anti-CEA antibodies can thus be radioactively-labelled and applied for in vivo monitoring and detection of recurrent malignant disease, or used for therapeutic strategies which similarly take advantage of the ability of the antibodies to target cytotoxic agents selectively to tumor cells. The application of these novel procedures for manipulating MAb structure presents entirely new opportunities for diagnosis and treatment of human colorectal cancer.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Dan Zhang ◽  
Xiaofang Xiao ◽  
Daqiang Song ◽  
Siwei Chen ◽  
Zhuo Zhang ◽  
...  

Gut ◽  
2018 ◽  
Vol 67 (11) ◽  
pp. 1984-1994 ◽  
Author(s):  
Eleonora Cremonesi ◽  
Valeria Governa ◽  
Jesus Francisco Glaus Garzon ◽  
Valentina Mele ◽  
Francesca Amicarella ◽  
...  

ObjectiveTumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers.DesignExpression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing.ResultsCRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival.ConclusionsGut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues.


Sign in / Sign up

Export Citation Format

Share Document