scholarly journals In Vivo Response to α1-Adrenoreceptor Stimulation in Human White Adipose Tissue

2002 ◽  
Vol 10 (6) ◽  
pp. 555-558 ◽  
Author(s):  
Michael Boschmann ◽  
Götz Krupp ◽  
Friedrich C. Luft ◽  
Susanne Klaus ◽  
Jens Jordan
1995 ◽  
Vol 268 (3) ◽  
pp. R744-R751 ◽  
Author(s):  
T. G. Youngstrom ◽  
T. J. Bartness

When Siberian hamsters are transferred from long summerlike days (LDs) to short winterlike days (SDs) they decrease their body weight, primarily as body fat. These SD-induced decreases in lipid stores are not uniform. Internally located white adipose tissue (WAT) pads are depleted preferentially of lipid, whereas the more externally located subcutaneous WAT pads are relatively spared. These data suggest a possible differential sympathetic neural control over catecholamine-induced lipolysis and that lipolytic rates are greater for internal vs. external WAT pads. Moreover, if these differential rates of lipolysis are due to differential sympathetic nervous system (SNS) drives on the pads, then fat pad-specific catecholaminergic innervation may exist. Therefore, we tested whether inguinal WAT (IWAT; an external pad) and epididymal WAT (EWAT; an internal pad) were innervated differentially. In addition, we tested whether norepinephrine (NE) turnover (TO) reflected the presumed greater SNS drive on EWAT vs. IWAT after SD exposure. Injections of fluorescent tract tracers [Fluoro-Gold or indocarbocyanine perchlorate (DiI)] demonstrated projections from the SNS ganglia T13-L3 to both fat pads. Retrograde labeling revealed a relatively separate pattern of distribution of labeled neurons in the ganglia projecting to each pad. In vivo anterograde transport of DiI resulted in labeling in both IWAT and EWAT that included staining around individual adipocytes and occasionally retrogradely labeled cells. The proportionately greater decrease in EWAT compared with IWAT mass after 5 wk of SD exposure was reflected in greater EWAT NE TO than found in their LD counterparts for this pad.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 73 ◽  
pp. e10-e11
Author(s):  
Terence Alan Jones ◽  
Abhir Bhalero ◽  
Sarah Wayte ◽  
Thomas Barber ◽  
Charle Hutchinson

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 569
Author(s):  
Pablo Garcia-Valtanen ◽  
Ruth Marian Guzman-Genuino ◽  
John D. Hayball ◽  
Kerrilyn R. Diener

White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid (poly(I:C)) or whole replicative murine cytomegalovirus (MCMV), could stimulate the expression of IL-10 in murine WAT using in vivo and ex vivo approaches. Our results showed that in vivo responses to systemic administration of poly(I:C) resulted in high levels of endogenously-produced IL-10 and IL-21 in WAT. In ex vivo WAT explants, a subset of B-cells increased their endogenous IL-10 expression in response to poly(I:C). Finally, MCMV replication in WAT explants resulted in decreased IL-10 levels, opposite to the effect seen with poly(I:C). Moreover, downregulation of IL-10 correlated with relatively lower number of Bregs. To our knowledge, this is the first report of IL-10 expression by WAT and WAT-associated B-cells in response to viral stimuli.


2019 ◽  
Vol 20 (21) ◽  
pp. 5377 ◽  
Author(s):  
Martina La Spina ◽  
Eva Galletta ◽  
Michele Azzolini ◽  
Saioa Gomez Zorita ◽  
Sofia Parrasia ◽  
...  

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein—a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3356 ◽  
Author(s):  
Weiyao Liao ◽  
Xiaohan Yin ◽  
Qingrong Li ◽  
Hongmin Zhang ◽  
Zihui Liu ◽  
...  

Promoting the browning of white fat may be a potential means of combating obesity. Therefore, in this study, we investigated the effect of resveratrol (RES) on the body weight and browning of white fat in high-fat diet (HFD)-induced obese mice and the potential associated mechanism in vivo. Eight-week-old male mice were randomized to receive different treatments: (1), chow without any additional treatment (chow); (2), chow plus 0.4% resveratrol (chow-RES); (3), HFD without any additional treatment (HFD); and (4), HFD plus 0.4% resveratrol (HFD-RES). After 4 weeks of feeding, additional 8-week-old male recipient mice were randomly allocated to the following 4 treatments: (5), HFD and received feces from chow-fed mice; (6), HFD and received feces from chow-RES-fed mice; (7), HFD and received feces from HFD-fed mice; and (8), HFD and received feces from HFD-RES-fed mice. RES treatment significantly inhibited increases in fat accumulation, promoted the browning of white adipose tissue (WAT) and alleviated gut microbiota dysbiosis in HFD-fed mice. Subsequent analyses showed that the gut microbiota remodeling induced by resveratrol had a positive role in WAT browning, and sirtuin-1 (Sirt1) signaling appears to be a key component of this process. Overall, the results show that RES may serve as a potential intervention to reduce obesity by alleviating dysbiosis of the gut microbiota.


Neonatology ◽  
1974 ◽  
Vol 24 (3-4) ◽  
pp. 256-272 ◽  
Author(s):  
H. Schenk ◽  
T. Heim ◽  
H. Wagner ◽  
L. Winkler ◽  
F. Varga ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Scott Fuller ◽  
Allison J. Richard ◽  
David M. Ribnicky ◽  
Robbie Beyl ◽  
Randall Mynatt ◽  
...  

In addition to serving as a storage site for reserve energy, adipocytes play a critical role in whole-body insulin sensitivity and glucose metabolism. St. John’s Wort (SJW) is a botanical supplement widely used as an over-the-counter treatment of depression and a variety of other conditions associated with anxiety and nerve pain. Previous studies in our laboratory demonstrated that SJW inhibits insulin-stimulated glucose uptake and adipocyte differentiation in cultured murine and mature human adipocytes. To investigate the effects of SJW on adipocyte functionin vivo, we utilized C57BL/6J mice. In our studies, mice were administered SJW extract (200 mg/kg) once daily by gavage for two weeks. In contrast to ourin vitrostudies, mice treated with SJW extract showed increased levels of adiponectin in white adipose tissue in a depot specific manner(P<0.01). SJW also exerted an insulin-sensitizing effect as indicated by a significant increase in insulin-stimulated Akt serine phosphorylation in epididymal white adipose tissue(P<0.01). Food intake, body weight, fasting blood glucose, and fasting insulin did not differ between the two groups. These results are important as they indicate that SJW does not promote metabolic dysfunction in adipose tissuein vivo.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e98343 ◽  
Author(s):  
Yuan Gao ◽  
Nicole Hamers ◽  
Maryam Rakhshandehroo ◽  
Ruud Berger ◽  
John Lough ◽  
...  

2012 ◽  
Vol 302 (6) ◽  
pp. E705-E713 ◽  
Author(s):  
Xin Cui ◽  
Yuhui Wang ◽  
Lingjun Meng ◽  
Weihua Fei ◽  
Jingna Deng ◽  
...  

Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ∼150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.


1990 ◽  
Vol 267 (1) ◽  
pp. 99-103 ◽  
Author(s):  
I Cusin ◽  
J Terrettaz ◽  
F Rohner-Jeanrenaud ◽  
B Jeanrenaud

The effects of hyperinsulinaemia imposed on normal rats on the subsequent insulin-responsiveness in vivo of 2-deoxy-D-glucose uptake of white adipose tissue and of various muscle types were investigated. This was done by treating normal rats with insulin via osmotic minipumps, and by comparing them with saline-infused controls. Hyperinsulinaemia produced by prior insulin treatment resulted in a well-tolerated hypoglycaemia. At the end of the treatment, the glucose utilization index of individual tissues was determined by euglycaemic/hyperinsulinaemic clamps associated with the labelled 2-deoxy-D-glucose method. Prior insulin treatment resulted in increased insulin-responsiveness of the glucose utilization index of white adipose tissue, and in increased total lipogenesis in white adipose tissue and fat-pad weight. In contrast, prior insulin treatment resulted in a decreased glucose utilization index of several muscles. These opposite effects of hyperinsulinaemia on glucose utilization in white adipose tissue and muscles persisted when the hypoglycaemia-induced catecholamine output was prevented (adrenomedullectomy, propranolol treatment), as well as when hypoglycaemia was normalized by concomitant insulin treatment and glucose infusion. Insulin suppressed hepatic glucose production during the clamps in insulin-treated rats as in the respective controls, whereas total hepatic lipid synthesis and liver fat content were greater in rats treated with insulin than in controls. It is concluded that hyperinsulinaemia itself could be one of the driving forces responsible for producing increased glucose utilization by white adipose tissue, increased total lipid synthesis with fat accumulation in adipose tissue and the liver, together with an insulin-resistant state at the muscular level.


Sign in / Sign up

Export Citation Format

Share Document