scholarly journals Protein arginine methyltransferases: promising targets for cancer therapy

Author(s):  
Jee Won Hwang ◽  
Yena Cho ◽  
Gyu-Un Bae ◽  
Su-Nam Kim ◽  
Yong Kee Kim

AbstractProtein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.

2005 ◽  
Vol 280 (23) ◽  
pp. 21700-21705 ◽  
Author(s):  
Waraporn Komyod ◽  
Uta-Maria Bauer ◽  
Peter C. Heinrich ◽  
Serge Haan ◽  
Iris Behrmann

Transcription factors of the STAT (signal transducer and activator of transcription) family are important in signal transduction of cytokines. They are subject to post-translational modification by phosphorylation on tyrosine and serine residues. Recent evidence suggested that STATs are methylated on a conserved arginine residue within the N-terminal region. STAT arginine methylation has been described to be important for STAT function and loss of arginine methylation was discussed to be involved in interferon resistance of cancer cells. Here we provide several independent lines of evidence indicating that the issue of arginine methylation of STATs has to be reassessed. First, we show that treatment of melanoma and fibrosarcoma cells with inhibitors used to suppress methylation (N-methyl-2-deoxyadenosine, adenosine, dl-homocysteine) had profound and rapid effects on phosphorylation of STAT1 and STAT3 but also on p38 and Erk signaling cascades which are known to cross-talk with the Jak/STAT pathway. Second, we show that anti-methylarginine antibodies did not precipitate specifically STAT1 or STAT3. Third, we show that mutation of Arg31 to Lys led to destabilization of STAT1 and STAT3, implicating an important structural role of Arg31. Finally, purified catalytically active protein arginine methyltransferases (PRMT1, -2, -3, -4, and -6) did not methylate STAT proteins, and cotransfection with PRMT1 did not affect STAT1-controlled reporter gene activity. Taken together, our data suggest the absence of arginine methylation of STAT1 and STAT3.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hyun-Kyung So ◽  
Sunghee Kim ◽  
Jong-Sun Kang ◽  
Sang-Jin Lee

Arginine methylation mediated by protein arginine methyltransferases (PRMTs) is a post-translational modification of both histone and non-histone substrates related to diverse biological processes. PRMTs appear to be critical regulators in skeletal muscle physiology, including regeneration, metabolic homeostasis, and plasticity. Chronic inflammation is commonly associated with the decline of skeletal muscle mass and strength related to aging or chronic diseases, defined as sarcopenia. In turn, declined skeletal muscle mass and strength can exacerbate chronic inflammation. Thus, understanding the molecular regulatory pathway underlying the crosstalk between skeletal muscle function and inflammation might be essential for the intervention of muscle pathophysiology. In this review, we will address the current knowledge on the role of PRMTs in skeletal muscle physiology and pathophysiology with a specific emphasis on its relationship with inflammation.


2021 ◽  
Author(s):  
Angela H Freeman ◽  
Karen Tembiwa ◽  
James R Brenner ◽  
Michael R Chase ◽  
Sarah M Fortune ◽  
...  

AbstractGrowth of mycobacterial cells requires successful coordination between elongation and division of the cell wall. However, it is not clear which factors directly mediate this coordination. Here, we studied the function and post-translational modification of an essential division factor, SepIVA, in Mycobacterium smegmatis. We find that SepIVA is arginine methylated, and that these modifications alter both division and polar elongation of Msmeg. Furthermore, SepIVA impacts the localization of MurG. Polar localization of MurG correlates with polar elongation in arginine methylation mutants of sepIVA. These results establish SepIVA as a regulator of both elongation and division, and characterize a physiological role for protein arginine methylation for the first time in bacteria.


2010 ◽  
Vol 1800 (9) ◽  
pp. 977-985 ◽  
Author(s):  
Chongtae Kim ◽  
Yongchul Lim ◽  
Byong Chul Yoo ◽  
Nam Hee Won ◽  
Sangduk Kim ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
pp. 725-739
Author(s):  
Daniele Musiani ◽  
Enrico Massignani ◽  
Alessandro Cuomo ◽  
Avinash Yadav ◽  
Tiziana Bonaldi

: The absence of efficient mass spectrometry-based approaches for the large-scale analysis of protein arginine methylation has hindered the understanding of its biological role, beyond the transcriptional regulation occurring through histone modification. In the last decade, however, several technological advances of both the biochemical methods for methylated polypeptide enrichment and the computational pipelines for MS data analysis have considerably boosted this research field, generating novel insights about the extent and role of this post-translational modification. : Here, we offer an overview of state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods. The further optimization and systematic application of these analytical solutions will lead to ground-breaking discoveries on the role of protein methylation in biological processes.


2007 ◽  
Vol 292 (1) ◽  
pp. L18-L24 ◽  
Author(s):  
Patrick Bulau ◽  
Dariusz Zakrzewicz ◽  
Kamila Kitowska ◽  
James Leiper ◽  
Andreas Gunther ◽  
...  

Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1079
Author(s):  
Britta Qualmann ◽  
Michael M. Kessels

The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, but can also directly control an actin nucleation-promoting factor shaping neuronal cells—a key process for the formation of neuronal networks in vertebrate brains.


Sign in / Sign up

Export Citation Format

Share Document