The role of protein arginine methylation in cell cycle and tumorigenesis of brain cancer cell lines

2016 ◽  
Vol 05 (03) ◽  
Author(s):  
Anita E Livio
2006 ◽  
Vol 114 (S 1) ◽  
Author(s):  
B Trojanowicz ◽  
Z Chen ◽  
J Bialek ◽  
Y Radestock ◽  
S Hombach-Klonisch ◽  
...  

2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 610
Author(s):  
Apostolos Menegakis ◽  
Rob Klompmaker ◽  
Claire Vennin ◽  
Aina Arbusà ◽  
Maartje Damen ◽  
...  

Double strand breaks (DSBs) are highly toxic to a cell, a property that is exploited in radiation therapy. A critical component for the damage induction is cellular oxygen, making hypoxic tumor areas refractory to the efficacy of radiation treatment. During a fractionated radiation regimen, these hypoxic areas can be re-oxygenated. Nonetheless, hypoxia still constitutes a negative prognostic factor for the patient’s outcome. We hypothesized that this might be attributed to specific hypoxia-induced cellular traits that are maintained upon reoxygenation. Here, we show that reoxygenation of hypoxic non-transformed RPE-1 cells fully restored induction of DSBs but the cells remain radioresistant as a consequence of hypoxia-induced quiescence. With the use of the cell cycle indicators (FUCCI), cell cycle-specific radiation sensitivity, the cell cycle phase duration with live cell imaging, and single cell tracing were assessed. We observed that RPE-1 cells experience a longer G1 phase under hypoxia and retain a large fraction of cells that are non-cycling. Expression of HPV oncoprotein E7 prevents hypoxia-induced quiescence and abolishes the radioprotective effect. In line with this, HPV-negative cancer cell lines retain radioresistance, while HPV-positive cancer cell lines are radiosensitized upon reoxygenation. Quiescence induction in hypoxia and its HPV-driven prevention was observed in 3D multicellular spheroids. Collectively, we identify a new hypoxia-dependent radioprotective phenotype due to hypoxia-induced quiescence that accounts for a global decrease in radiosensitivity that can be retained upon reoxygenation and is absent in cells expressing oncoprotein E7.


2008 ◽  
Vol 415 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Neil E. Torbett ◽  
Antonio Luna-Moran ◽  
Zachary A. Knight ◽  
Andrew Houk ◽  
Mark Moasser ◽  
...  

The PI3K (phosphoinositide 3-kinase) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small-molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we have demonstrated that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110α inhibitors were generally effective in inhibiting the phosphorylation of PKB (protein kinase B)/Akt and S6, two downstream components of PI3K signalling, in most cell lines examined. In contrast, p110β-selective inhibitors only reduced PKB/Akt phosphorylation in PTEN (phosphatase and tensin homologue deleted on chromosome 10) mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing cell-cycle arrest in the G1 phase, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell-cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signalling pathways. Taken together, our data indicate that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts.


2014 ◽  
Vol 68 (8) ◽  
pp. 1105-1115 ◽  
Author(s):  
Su-Wen Lim ◽  
Hwei-San Loh ◽  
Kang Nee Ting ◽  
Tracey D. Bradshaw ◽  
Nazariah A. Zeenathul

2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 480-480
Author(s):  
Anirban P Mitra ◽  
Andrea Kokorovic ◽  
Tanner Miest ◽  
Vikram M Narayan ◽  
Debasish Sundi ◽  
...  

480 Background: Members of the forkhead transcription factor (FOX) family are important mediators of embryonic development and are known to be altered in a variety of cancers. The functional role of FOXF1 in bladder tumorigenesis and progression has not been clearly characterized thus far. This study investigated the clinical implications of differential FOXF1 expression in bladder cancer, and potential mechanisms by which its alteration can lead to tumor metastasis. Methods: Whole genome expression profiling was performed on paired primary tumors and nodal metastases from a radical cystectomy discovery cohort using Illumina HT12 v3-4 BeadChip arrays to identify FOXF1 as a top differentially expressed gene. Prognostic role of differential FOXF1 expression was validated on two independent cystectomy cohorts. Differential FOXF1 expression was also evaluated in murine orthotopic xenografts. Small interfering RNA was used to knock down FOXF1 in RT112 and UC6 bladder cancer cell lines to develop an in vitro model for assessment of metastatic potential. Next-generation sequencing and hierarchical clustering analysis were used to identify differentially altered genes secondary to FOXF1 knockdown. 186 biologically curated pathways were interrogated with internal validation to elucidate the downstream biologic mechanisms of metastasis. Results: In the discovery cohort, FOXF1 was a top differentially expressed gene with 3.6-fold lower expression in nodal metastases than paired primary tumors (n = 33, p < 0.001). Multivariable analyses in two validation cohorts (total n = 128) indicated that FOXF1 underexpression was associated with worse cancer-specific (p = 0.046) and overall survival (p = 0.006). Murine orthotopic xenografts (n = 13) established from human bladder cancer cell lines (UC3, UC6, UC14) showed FOXF1 underexpression in metastatic deposits compared with primary tumors (p = 0.004). Hierarchical clustering identified 40 differentially expressed genes between FOXF1-knockdown bladder cancer cell lines and their corresponding controls. Biological pathway interrogation showed differential enrichment for genes associated with mitogen-activated protein kinase signaling, focal adhesion and other carcinogenic pathways in FOXF1-knockdown cells compared with controls (normalized enrichment score ≥ 1.3). Conclusions: We identify and characterize FOXF1 as a novel regulatory molecule that potentially drives bladder cancer metastasis. This may be modulated through alterations in intracellular signaling and cellular adhesion. FOXF1 may serve as a prognostic biomarker that can identify patients at impending risk for metastasis who may benefit from more aggressive management.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ieva Antanavičiūtė ◽  
Valeryia Mikalayeva ◽  
Ieva Ceslevičienė ◽  
Gintarė Milašiūtė ◽  
Vytenis Arvydas Skeberdis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document