scholarly journals Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Baiyi Chen ◽  
Rongrong Zhang ◽  
Yaqi Hou ◽  
Jian Zhang ◽  
Shiyan Chen ◽  
...  

AbstractSafe and precise control of gas flow is one of the key factors to many physical and chemical processes, such as degassing, natural gas transportation, and gas sensor. In practical application, it is essential for the gas-involved physicochemical process to keep everything under control and safe, which significantly relies on the controllability, safety, and stability of their valves. Here we show a light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control under a constant pressure by incorporating dynamic gating liquid with light responsiveness of solid porous substrate. Our experimental and theoretical analysis reveal that the photoisomerization of azobenzene-based molecular photoswitches on the porous substrate enabled the gas valve to possess a light-responsive and reversible variation of substantial critical pressure of non-thermal effective gas flow switch. Moreover, the chemically inert gating liquid prevented the solid substrate from corrosion and, by combining with the high spatiotemporal resolution of light, the gas valve realizes a precisely positional open and close under a steady-state pressure. The application demonstrations in our results show the potentials of the new gas valve for bringing opportunities to many applications, such as gas-involved reaction control in microfluidics, soft actuators, and beyond.

2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.


1999 ◽  
Vol 96 (6) ◽  
pp. 715-720
Author(s):  
G. Danloy ◽  
J. Mignon ◽  
L. Bonte
Keyword(s):  

2003 ◽  
Vol 105 (3) ◽  
pp. 237-246 ◽  
Author(s):  
Lena Klintberg ◽  
Mikael Karlsson ◽  
Lars Stenmark ◽  
Greger Thornell

2014 ◽  
Vol 940 ◽  
pp. 173-178
Author(s):  
Xiao Long Tang ◽  
Chun Ming Geng

In modern industrial processing of the materials, the solution spraying technology is widely used. Spraying a layer of special solution plays an important role to change their physical and chemical properties. Based on single-axis servo control, precision solution spraying system is able to spray a very thin and a uniform layer of solution on the surface of materials as required. The spraying system mechanical structure is mainly composed of these parts: housing, single-axis servo translation stage, push-pull syringe, multifunctional nozzle and other components. The servo translation stage is capable of providing precise control of speed and stroke by using a specialized controller and driver. The system is running stably and smoothly throughout the experiments after the completion of the entire system assembly and it can fully comply with the requirements of customers with excellent sealing performance, feature-rich and human-friendly control interface and compact mechanical structure.


1980 ◽  
Vol 67 (4) ◽  
pp. 1413-1413
Author(s):  
George J. Kay ◽  
Alan Keskimen

CORROSION ◽  
10.5006/3820 ◽  
2021 ◽  
Author(s):  
Wei Liu ◽  
Huayi Yin ◽  
Kaifa Du ◽  
Bing Yang ◽  
Dihua Wang

Corrosion-resistant metals and alloys towards liquid metals determine the service performances and lifetime of the devices employing liquid metals. This paper studies the static corrosion behaviors of iron, chromium, nickel, low carbon steel, and four types of stainless steels (SS410, SS430, SS304, SS316L) in liquid Sb-Sn at 500 oC, aiming to screen corrosion-resistant SS for Li||Sb-Sn liquid metal batteries (LMBs). The corrosion rates of Fe and Ni are 0.94 μm h-1 and 6.03 μm h-1 after 160 h’s measurement, respectively. Cr shows a low corrosion rate of < 0.05μm h-1, which is due to the formation of a relatively stable Cr-Sb layer that may be able to prevent the interdiffusion between the solid substrate and liquid Sb-Sn. Ni has a high corrosion rate because the formed Ni-Sb and Ni-Sn compounds are soluble in the liquid Sb-Sn. The corrosion products of both pure metals and SS can be predicted by thermodynamic and phase diagram analysis. Among the four types of SS, SS430 shows the best corrosion resistance towards liquid Sb-Sb with a corrosion rate of 0.19 μm h-1. Therefore, a liquid Sb-Sn resistant material should have a high Cr content and a low Ni content, and this principle is applicable to design metallic materials not only for LMBs but also for other devices employing liquid Sb- and Sn-containing liquid metals.


1971 ◽  
Vol 93 (3) ◽  
pp. 200-205
Author(s):  
Seth R. Goldstein ◽  
Andrew C. Harvey

Two passive gas flow controllers are presented which provide compensation for variations in ambient temperature and supply pressure. One technique, which provides first-order error compensation, utilizes a choked orifice having its area linearily varied in proportion to a diaphragm deflection. Compensation is achieved by applying upstream pressure to one side of the diaphragm, and by applying a trapped gas pressure proportional to absolute temperature on the other side of the diaphragm. General design relationships are presented, and a prototype unit constructed to control a minute flow rate of high-pressure oxygen is described. A second flow control technique is presented which provides the required nonlinear temperature compensation for flow supplied through a constant-area choked orifice. This is achieved by utilizing a compliant volume of trapped gas to generate a pressure proportional to the square root of absolute temperature. This pressure is used to control the pressure upstream of the choked orifice, thus providing constant flow.


Sign in / Sign up

Export Citation Format

Share Document