scholarly journals APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer’s disease

Author(s):  
Nicholas Brookhouser ◽  
Sreedevi Raman ◽  
Carlye Frisch ◽  
Gayathri Srinivasan ◽  
David A. Brafman

AbstractGenome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.

2019 ◽  
Author(s):  
Devrim Kilinc ◽  
Anaïs-Camille Vreulx ◽  
Tiago Mendes ◽  
Amandine Flaig ◽  
Diego Marques-Coelho ◽  
...  

AbstractRecent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer’s disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer’s disease, deciphering the impact of Alzheimer’s risk genes on synapse formation and maintenance is of great interest. In this paper, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid-beta (Aβ) peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein (APP). Co-culture with cells overexpressing mutated APP exposed the synapses of primary hippocampal neurons to Aβ1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of Aβ suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta (Pyk2) –an Alzheimer’s disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer’s disease brains at gene expression and protein levels–selectively in postsynaptic neurons is protective against Aβ1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically-relevant model of Alzheimer’s disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.


2021 ◽  
Author(s):  
Emmanuel Adewuyi ◽  
Eleanor O’Brien ◽  
Dale Nyholt ◽  
Tenielle Porter ◽  
Simon Laws

Abstract Several observational studies suggest a relationship between Alzheimer’s disease (AD) and gastrointestinal tract (GIT) disorders; however, their underlying mechanisms remain unclear. Here, we analysed several genome-wide association studies (GWAS) summary statistics (N = 34,652 – 456,327) to assess AD and GIT disorders relationships. We found a significant genetic overlap and correlation between AD and each of gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), medications for GERD or PUD (PGM), gastritis-duodenitis, irritable bowel syndrome and diverticulosis, but not inflammatory bowel disease. Our analysis suggests a partial causal association between AD and gastritis-duodenitis, diverticulosis and medication for PUD. GWAS meta-analysis identified seven loci (P < 5 × 10-8, PDE4B, CD46, SEMA3F, HLA-DRA, MTSS2, PHB, and APOE) shared by AD and PGM, six of which are novel. These loci were replicated using GERD and PUD GWAS and reinforced in gene-based analyses. Lipid metabolism, autoimmune system, lipase inhibitors, PD-1 signalling, and statin pathways were significantly enriched for AD and GIT disorders. These findings support shared genetic susceptibility in AD and GIT disorders. Lipase inhibitors and statins may provide novel therapeutic avenues for AD, GIT disorders, or their comorbidity.


2020 ◽  
Author(s):  
Emily Maguire ◽  
Georgina E. Menzies ◽  
Thomas Phillips ◽  
Michael Sasner ◽  
Harriet M. Williams ◽  
...  

AbstractRecent genome-wide association studies of Alzheimer’s disease (AD) have identified variants implicating immune pathways in disease development. A rare coding variant of PLCG2, which encodes PLCγ2, shows a significant protective effect for AD (rs72824905, P522R, P=5.38×10−10, Odds Ratio = 0.68). Molecular dynamic modelling of the PLCγ2-R522 variant, situated within the auto-inhibitory domain of PLCγ2, suggests a structural change to the protein. Through CRISPR-engineering we have generated novel PLCG2-R522 harbouring human induced pluripotent cell lines (hiPSC) and a mouse knockin model, neither of which exhibits alterations in endogenous PLCG2 expression. Mouse microglia and macrophages and hiPSC-derived microglia-like cells with the R522 mutation, all demonstrate a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This signalling alteration manifests as enhanced cellular Ca2+ store release (∼20-40% increase) in response to physiologically-relevant stimuli (e.g. Fc receptor ligation and Aβ oligomers). This hyperfunctionality resulted in increased PIP2 depletion in the cells with the PLCγ2-R522 variant after exposure to stimuli and reduced basal detection of PIP2 levels in vivo. These PLCγ2-R522 associated abnormalities resulted in impairments to phagocytosis (fungal and bacterial particles) and enhanced endocytosis (Aβ oligomers and dextran). PLCγ2 sits downstream of disease relevant pathways, such as TREM2 and CSF1R and alterations in its activity, direct impacts cell function, which in the context of the inherent drugability of enzymes such as PLCγ2, raise the prospect of manipulation of PLCγ2 as a therapeutic target in Alzheimer’s Disease.


2022 ◽  
Vol 12 (5) ◽  
pp. 888-896
Author(s):  
Wenjuan Fan ◽  
Chen Xudong ◽  
Sun Yizheng ◽  
Shanshan Wu ◽  
Haili Wang ◽  
...  

Alzheimer’s disease (AD) is a progressive neurologic disorder that impacts a diverse population of older adults. As three-dimensional (3D) models are powerful tools for advancing AD studies, the authors have been developed AD cortical organoids to enable the observation of AD pathology at the cellular, tissue, and organ levels. For creating the model, APPSwe/Ind (APP) and PSEN1 (PS1) mutant genes were transfected into mouse induced pluripotent stem cells (iPSCs) following which the iPSC lines that expressed mutant APP and PS1 proteins were obtained. Then, using modified serum-free suspended embryoid body culture, AD cerebral organoids were made successfully at various ages. The AD model can show AD’s biochemical and pathological alterations, such as overexpressions of Aβ40 and Aβ42 and a decrease of GABAergic interneurons. The proposed model has the potential for implementation in many biomedical applications, including AD drug screening, stem cell transplant, and neuronal tissue engineering.


2021 ◽  
Author(s):  
Abbas Dehghan ◽  
Rui Pinto ◽  
Ibrahim Karaman ◽  
Jian Hung ◽  
Brenan Durainayagam ◽  
...  

Genome-wide association studies (GWAS) have identified genetic loci associated with risk of Alzheimer's disease (AD), but underlying mechanisms are largely unknown. Using untargeted mass spectrometry, we conducted a metabolome-wide association study (MWAS) that identified the association of lactosylceramides (LacCer)s with AD-related single nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0x 10-5 to 1.3 x 10-44). Independent support for the association came through the discovery of differences in concentrations of sphingomyelins, ceramides, and hexose-ceramides in brain tissue from ABCA7-null mice compared to wild type (P =0.049 -1.44 x10-5). We showed that plasma LacCer concentrations are associated with cognitive performance in humans. We found evidence for a potentially causal association of LacCer with AD risk using Mendelian randomisation analysis. Our work suggests that AD risks arising from functional variations in ABCA7 expression are mediated at least in part through ceramides, the metabolism or downstream signalling of which offers new therapeutic opportunities.


2021 ◽  
pp. 1-10
Author(s):  
Xian Li ◽  
Yan Tian ◽  
Yu-Xiang Yang ◽  
Ya-Hui Ma ◽  
Xue-Ning Shen ◽  
...  

Background: Several studies showed that life course adiposity was associated with Alzheimer’s disease (AD). However, the underlying causality remains unclear. Objective: We aimed to examine the causal relationship between life course adiposity and AD using Mendelian randomization (MR) analysis. Methods: Instrumental variants were obtained from large genome-wide association studies (GWAS) for life course adiposity, including birth weight (BW), childhood body mass index (BMI), adult BMI, waist circumference (WC), waist-to-hip ratio (WHR), and body fat percentage (BFP). A meta-analysis of GWAS for AD including 71,880 cases and 383,378 controls was used in this study. MR analyses were performed using inverse variance weighted (IVW), weighted median, and MR-Egger regression methods. We calculated odds ratios (ORs) per genetically predicted standard deviation (1-SD) unit increase in each trait for AD. Results: Genetically predicted 1-SD increase in adult BMI was significantly associated with higher risk of AD (IVW: OR = 1.03, 95% confidence interval [CI] = 1.01–1.05, p = 2.7×10–3) after Bonferroni correction. The weighted median method indicated a significant association between BW and AD (OR = 0.94, 95% CI = 0.90–0.98, p = 1.8×10–3). We also found suggestive associations of AD with WC (IVW: OR = 1.03, 95% CI = 1.00–1.07, p = 0.048) and WHR (weighted median: OR = 1.04, 95% CI = 1.00–1.07, p = 0.029). No association was detected of AD with childhood BMI and BFP. Conclusion: Our study demonstrated that lower BW and higher adult BMI had causal effects on increased AD risk.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1802
Author(s):  
Enrique Armijo ◽  
George Edwards ◽  
Andrea Flores ◽  
Jorge Vera ◽  
Mohammad Shahnawaz ◽  
...  

Alzheimer’s disease (AD) is the most common type of dementia in the elderly population. The disease is characterized by progressive memory loss, cerebral atrophy, extensive neuronal loss, synaptic alterations, brain inflammation, extracellular accumulation of amyloid-β (Aβ) plaques, and intracellular accumulation of hyper-phosphorylated tau (p-tau) protein. Many recent clinical trials have failed to show therapeutic benefit, likely because at the time in which patients exhibit clinical symptoms the brain is irreversibly damaged. In recent years, induced pluripotent stem cells (iPSCs) have been suggested as a promising cell therapy to recover brain functionality in neurodegenerative diseases such as AD. To evaluate the potential benefits of iPSCs on AD progression, we stereotaxically injected mouse iPSC-derived neural precursors (iPSC-NPCs) into the hippocampus of aged triple transgenic (3xTg-AD) mice harboring extensive pathological abnormalities typical of AD. Interestingly, iPSC-NPCs transplanted mice showed improved memory, synaptic plasticity, and reduced AD brain pathology, including a reduction of amyloid and tangles deposits. Our findings suggest that iPSC-NPCs might be a useful therapy that could produce benefit at the advanced clinical and pathological stages of AD.


Sign in / Sign up

Export Citation Format

Share Document