scholarly journals MEF2A transcriptionally upregulates the expression of ZEB2 and CTNNB1 in colorectal cancer to promote tumor progression

Oncogene ◽  
2021 ◽  
Author(s):  
Qing Xiao ◽  
Yaqi Gan ◽  
Yimin Li ◽  
Lili Fan ◽  
Jiaqi Liu ◽  
...  

AbstractColorectal cancer (CRC) is one of the leading cancers worldwide, accounting for high morbidity and mortality. The mechanisms governing tumor growth and metastasis in CRC require detailed investigation. The results of the present study indicated that the transcription factor (TF) myocyte enhancer factor 2A (MEF2A) plays a dual role in promoting proliferation and metastasis of CRC by inducing the epithelial-mesenchymal transition (EMT) and activation of WNT/β-catenin signaling. Aberrant expression of MEF2A in CRC clinical specimens was significantly associated with poor prognosis and metastasis. Functionally, MEF2A directly binds to the promoter region to initiate the transcription of ZEB2 and CTNNB1. Simultaneous activation of the expression of EMT-related TFs and Wnt/β-catenin signaling by MEF2A overexpression induced the EMT and increased the frequency of tumor formation and metastasis. The present study identified a new critical oncogene involved in the growth and metastasis of CRC, providing a potential novel therapeutic target for CRC intervention.

2020 ◽  
Vol 29 ◽  
pp. 096368972094358
Author(s):  
Huan Ji ◽  
Xu Ding ◽  
Wei Zhang ◽  
Yang Zheng ◽  
Hongming Du ◽  
...  

The aim of this study was to investigate claudin-7 (CLDN7) expression in salivary adenoid cystic carcinoma (SACC) and its function in SACC cells. We determined CLDN7 expression in SACC tumors via immunohistochemistry and western blotting and evaluated the association between CLDN7 expression and clinicopathologic variables. Besides this, we constructed a stably transfected CLDN7 knockdown SACC-LM cell line via RNAi and assessed its biological behavior changes (cell viability, migration, and invasion). The correlation between CLDN7 and epithelial-mesenchymal transition (EMT) was analyzed. Additionally, a subcutaneous tumor formation model was used to assess SACC-LM cells tumorigenicity after the CLDN7 knockdown. In the present study, we found the CLDN7 expression of tumor group was lower than that in normal salivary glands and was significantly correlated with lymph node metastasis, recurrence, and gender. CLDN7 knockdown could add the proliferation and metastasis ability of SACC by regulating EMT through Wnt/β-catenin signaling pathway. In addition, CLDN7 knockdown in SACC promoted tumor growth in nude mice. CLDN7 inhibits cell proliferation and metastasis by inactivating the Wnt/β-catenin signaling in SACC. Thus, CLDN7 expression might be a useful marker to identify the potential for progression in SACC.


Author(s):  
Zirui He ◽  
Xiao Yang ◽  
Ling Huang ◽  
Leqi Zhou ◽  
Sen Zhang ◽  
...  

We designed the present study to access the roles and mechanisms of PSMC5 in colorectal cancer (CRC). Transcriptomic and clinical data from public datasets and our center were retrospectively analyzed. Functional assays were performed to investigate the effects of PSMC5 on CRC cells. The results showed that PSMC5 was significantly higher in cancer than normal tissues. Moreover, patients with higher expression of PSMC5 showed poorer prognosis. Silencing of PSMC5 dramatically suppressed the proliferation and invasion of CRC cells, while overexpression led to the opposite. In addition, we screened downstream targets and found that PSMC5 regulates multiple pathways including epithelial–mesenchymal transition, hypoxia, and immune response. Consistently, we found that PSMC5 was negatively correlated with levels of CD8 + T cells and B cells while promoting infiltration of macrophages and neutrophils. Collectively, these findings suggested that PSMC5 was a promising biomarker and target for immune therapy for CRC.


2020 ◽  
Author(s):  
Junyi Ren ◽  
Xiaopeng Wang ◽  
Gang Wei ◽  
Yajing Meng

Abstract Background: Due to high potency and low toxicity, desflurane has been wildly used during surgery. Recent evidence that the use of desflurane was associated with colorectal cancer (CRC) tumor metastasis and poor prognosis raising concerns about the safety of desflurane. However, the mechanism was uncovered.Methods: CRC cells were exposed to desflurane, the changes in morphology and epithelial-mesenchymal transition (EMT)-related genes were evaluated. Transwell assay was used to study the migration and invasion effect. Xenograft was performed to study the tumor formation ability of desflurane-treated cells in vivo. Dual luciferase reporter assay was conducted to verify the target of miR-34a. Knockdown or overexpression of LOXL3 was used to investigate the mechanism of desflurane-induced EMT. The association of LOXL3 with CRC molecular subtypes and clinical relevance was studied by analysis of public datasets. Results: Exposure to desflurane induced EMT, migration, and invasion in CRC cells. Mice injected with desflurane-treated cells formed more tumors in the lungs. Downregulation of miR-34a and upregulation of LOXL3 were required for desflurane-induced EMT in CRC cells. LOXL3 was a direct target of miR-34a. Overexpression of LOXL3 rescued miR-34a-repressed EMT after exposure to desflurane. Elevated expression of LOXL3 was enriched in CMS4 and CRIS-B subtypes. Patients with high expression of LOXL3 showed more lymph node metastasis, as well as poor survival.Conclusion: Desflurane induced EMT and metastasis in CRC through deregulation of miR-34a/LOXL3 axis. Clinical miR-34a mimic or inhibitor targeting LOXL3 might have a potential protective role when CRC patients anesthetized by desflurane.


2020 ◽  
Author(s):  
Huifang Zhu ◽  
Yongzhen Li ◽  
Yinghui Zhang ◽  
Zheying Zhang ◽  
Yongxia Wang ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have been reported to play an important role in tumorigenesis and metastasis of human colorectal cancer (CRC). However, the specific role of LincHOXA10 in CRC remains unknown.Methods: The expression of LincHOXA10 and HOXA10 in CRC cells and tissue samples was measured by quantitative reverse transcription PCR (qRT-PCR). The protein expression of HOXA10, E-cadherin, N-cadherin, Vinmentin, p-smad2 and p-smad3 was assessed by Western blotting or immunofluorescence staining. Cell proliferation, migration, and invasion were assessed by the MTT and transwell assays. Tumor growth in vivo was carried out by subcutaneous tumor formation in nude mice.Results: In the present study, we found that LincHOXA10 expression was significantly higher in human CRC tissues than the paired normal tissues. In fact, LincHOXA10 level correlated with the CRC tumor sizes and lymphatic metastasis. In cultured CRC cells, knockdown of LincHOXA10 inhibited cell proliferation, migration and invasion. LincHOXA10 deficiency also attenuated CRC tumor growth in vivo. Mechanistically, LincHOXA10 interacted with HOXA10 and regulated its expression. HOXA10 levels were interrelated to the LincHOXA10 level in CRC cells. Functionally, HOXA10 was essential for TGF-β1/SMADs-induced epithelial -mesenchymal transition of CRC cells, and HOXA10 played a critical role in mediating the function of LincHOXA10. Importantly, HOXA10 expression was significantly up-regulated in human CRC tissues.Conclusions: LincHOXA10 facilitates CRC development and metastasis via regulating HOXA10-mediated epithelial-mesenchymal transition of CRC cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guanghong Du ◽  
Xuelian Yu ◽  
Yun Chen ◽  
Wangting Cai

BackgroundColorectal cancer (CRC) is regarded as one of the most common malignancies in the world. MiR-1-3p was reported to be a tumor suppressor in CRC. However, the mechanisms have not been fully elucidated.MethodsTo identify CRC-associated miRNA, microarray data set GSE30454 was downloaded from the Gene Expression Omnibus database (GEO), and miR-1-3p was screened out as a candidate. The expression of miR-1-3p was detected using quantitative real-time polymerase chain reaction (qRT-PCR) in CRC cell lines and tissues. CCK-8 assay and transwell invasion assay were performed to determine CRC cell line proliferation and invasion, respectively. The levels of YWHAZ and EMT-associated proteins were detected using western blotting.ResultsBioinformatic analysis showed that miR-1-3p was downregulated in CRC tissues, which is verified by our experimental validation. The overexpression of miR-1-3p significantly suppressed CRC cell proliferation and invasion. Further studies showed that YWHAZ was a direct target of miR-1-3p and mediated epithelial–mesenchymal transition (EMT) modulated by miR-1-3p.ConclusionOur results demonstrated that miR-1-3p suppresses colorectal cancer cell proliferation and metastasis through regulating YWHAZ-mediated EMT, which may support a novel therapeutic strategy for CRC patients.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Paula I. Escalante ◽  
Luis A. Quiñones ◽  
Héctor R. Contreras

The FOLFOX scheme, based on the association of 5-fluorouracil and oxaliplatin, is the most frequently indicated chemotherapy scheme for patients diagnosed with metastatic colorectal cancer. Nevertheless, development of chemoresistance is one of the major challenges associated with this disease. It has been reported that epithelial-mesenchymal transition (EMT) is implicated in microRNA-driven modulation of tumor cells response to 5-fluorouracil and oxaliplatin. Moreover, from pharmacogenomic research, it is known that overexpression of genes encoding dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), the DNA repair enzymes ERCC1, ERCC2, and XRCC1, and the phase 2 enzyme GSTP1 impair the response to FOLFOX. It has been observed that EMT is associated with overexpression of DPYD, TYMS, ERCC1, and GSTP1. In this review, we investigated the role of miRNAs as EMT promotors in tumor cells, and its potential effect on the upregulation of DPYD, TYMS, MTHFR, ERCC1, ERCC2, XRCC1, and GSTP1 expression, which would lead to resistance of CRC tumor cells to 5-fluorouracil and oxaliplatin. This constitutes a potential mechanism of epigenetic regulation involved in late-onset of acquired resistance in mCRC patients under FOLFOX chemotherapy. Expression of these biomarker microRNAs could serve as tools for personalized medicine, and as potential therapeutic targets in the future.


Sign in / Sign up

Export Citation Format

Share Document