scholarly journals Oncogenic long intervening noncoding RNA Linc00284 promotes c-Met expression by sponging miR-27a in colorectal cancer

Oncogene ◽  
2021 ◽  
Author(s):  
Jun You ◽  
Jiayi Li ◽  
Chunlin Ke ◽  
Yanru Xiao ◽  
Chuanhui Lu ◽  
...  

AbstractEmerging evidences suggest that long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and cancer progression. Here, the aim of this study is to investigate the biological function of long intervening noncoding RNA Linc00284 in colorectal cancer (CRC). The expression levels of Linc00284, miR-27a and c-Met were evaluated by qPCR and/or Western blotting. Immunohistochemistry was used to detect the expression of Ki67 and Phh3 in tumor tissues. The interaction between Linc00284, miR-27a and c-Met was validated by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell function experiments, including CCK-8, wound-healing and transwell invasion assays, were conducted. The in vivo studies were performed with the subcutaneous tumor xenograft mouse models. Our findings reveal that Linc00284 is upregulated in CRC tissues and colorectal cancer cell lines HCT116 and SW480 in comparison with corresponding para-carcinoma tissues and human fetal colonic mucosa cells FHC. High expression of Linc00284 in tumor tissues is associated with tumor metastasis and predicts a poor clinical outcome in CRC patients. Serum Linc00284 is increased, while miR-27a is decreased in CRC patients compared to healthy controls. ROC curve analysis indicates that serum Linc00284 and miR-27a produce the area under the curve (AUC) value of at 0.8151 and 0.7316 in patients with colorectal cancer compared to healthy individuals, respectively. Additionally, results in vitro and in vivo experiments suggest that Linc00284 silencing significantly suppresses CRC cell proliferation and/or invasion. Mechanistically, Linc00284 promotes c-Met expression by acting as miR-27a sponge, leading to the activation of downstream signaling pathways, thereby causing malignant phenotypes of CRC cells. Taken together, Linc00284 exhibits oncogenic function and the disturbance of Linc00284/miR-27a/c-Met regulatory axis contributes to CRC progression, providing new insight into the pathogenesis of colorectal cancer. Importantly, the expression levels of serum Linc00284 and miR-27a may serve as clinical biomarkers for CRC diagnosis.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan-yu Zhang ◽  
Mao-qing Xing ◽  
Jing Guo ◽  
Jin-chuan Zhao ◽  
Xin Chen ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functions and targets of lncRNAs in neuroblastoma (NB) progression still remain to be determined. In this study, we aimed to investigate the effect of lncRNA DLX6 antisense RNA 1 (DLX6-AS1) on NB and the underlying mechanism involved. Methods Through mining of public microarray datasets, we identify aberrantly expressed lncRNAs in NB. The gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound-healing assay, transwell invasion assays and flow cytometry analysis were utilized to examine cell proliferation, migration, invasion and apoptosis. Luciferase reporter assay was performed to confirm the interaction between DLX6-AS1and its potential targets. Tumor xenograft assay was used to verify the role of DLX6-AS1 in NB in vivo. Results We identified DLX6-AS1 was upregulated in NB by using a public microarray dataset. The expression of DLX6-AS1 was increased in NB tissues and derived cell lines, and high expression of DLX6-AS1 was positively correlated with advanced TNM stage and poor differentiation. Knockdown of DLX6-AS1 induced neuronal differentiation, apoptosis and inhibited the growth, invasion, and metastasis of NB cells in vitro and impaired tumor growth in vivo. MiR-107 was the downstream target of DLX6-AS1. MiR-107 was found to target brain‐derived neurotrophic factor (BDNF) which is an oncogene in NB. Knockdown of miR-107 or overexpression of BDNF reversed the suppression of NB progression caused by DLX6-AS1 silence. Conclusion Overall, our finding supports that DLX6-AS1 promotes NB progression by regulating miR-107/BDNF pathway, acting as a novel therapeutic target for NB.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bo Jia ◽  
Junfeng Dao ◽  
Jiusong Han ◽  
Zhijie Huang ◽  
Xiang Sun ◽  
...  

Abstract Background Tongue squamous cell carcinoma (TSCC) is one of the most common oral tumors. Recently, long intergenic noncoding RNA 00958 (LINC00958) has been identified as an oncogene in human cancers. Nevertheless, the role of LINC00958 and its downstream mechanisms in TSCC is still unknown. Methods The effect of LINC00958 on TSCC cells proliferation and growth were assessed by CCK-8, colony formation, 5-Ethynyl-2′-deoxyuridline (EdU) assay and flow cytometry assays in vitro and tumor xenograft model in vivo. Bioinformatics analysis was used to predict the target of LINC00958 in TSCC, which was verified by RNA immunoprecipitation and luciferase reporter assays. Results LINC00958 was increased in TSCC tissues, and patients with high LINC00958 expression had a shorter overall survival. LINC00958 knockdown significantly decreased the growth rate of TSCC cells both in vitro and in vivo. In mechanism, LINC00958 acted as a ceRNA by competitively sponging miR-211-5p. In addition, we identified CENPK as a direct target gene of miR-211-5p, which was higher in TSCC tissues than that in adjacent normal tissues. Up-regulated miR-211-5p or down-regulated CENPK could abolish LINC00958-induced proliferation promotion in TSCC cells. Furthermore, The overexpression of CENPK promoted the expression of oncogenic cell cycle regulators and activated the JAK/STAT3 signaling. Conclusions Our findings suggested that LINC00958 is a potential prognostic biomarker in TSCC.


2021 ◽  
Author(s):  
Bo Jia ◽  
Junfeng Dao ◽  
Jiusong Han ◽  
Zhijie Huang ◽  
Xiang Sun ◽  
...  

Abstract ​ Background: Tongue squamous cell carcinoma (TSCC) is one of the most common oral tumors. Recently, long intergenic noncoding RNA 00958 (LINC00958) has been identified as an oncogene in human cancers. Nevertheless, the role of LINC00958 and its downstream mechanisms in TSCC is still unknown. Methods: The expression levels of LINC00958 in human TSCC tissues and adjacent normal tissues were detected. The effect of LINC00958 on TSCC cells proliferation and growth were assessed by CCK-8, colony formation, 5-Ethynyl-2’-deoxyuridline (EdU) assay, and flow cytometry assays in vitro and tumor xenograft model in vivo. Bioinformatics analysis was used to predict the target of LINC00958 in TSCC, which was verified by RNA immunoprecipitation and luciferase reporter assays. Results: We found LINC00958 was increased in TSCC tissues, and patients with high LINC00958 expression had a shorter overall survival. LINC00958 knockdown significantly decreased the growth rate of TSCC cells both in vitro and in vivo . In mechanism, LINC00958 acted as a competing endogenous RNA (ceRNA) by competitively sponging miR-211-5p. In addition, we identified centromere protein K (CENPK) as a direct target gene of miR-211-5p, which was higher in TSCC tissues than that in adjacent normal tissues. Up-regulated miR-211-5p or down-regulated CENPK could abolish LINC00958-induced proliferation promotion in TSCC cells. Conclusion: Furthermore, CENPK promoted the expression of oncogenic cell cycle regulators and activated the JAK/STAT3 signaling. Our findings suggest that LINC00958 is a potential prognostic biomarker in TSCC.


2021 ◽  
Author(s):  
Hong Liang ◽  
Qiuyan Zhao ◽  
Zhonglin Zhu ◽  
Chao Zhang ◽  
Hui Zhang

Abstract Background: Long non-coding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aim to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. Methods: LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The associations between LINC00958 expression with clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and Flow cytometric analyses. RNA-pull down, RIP and luciferase reporter assays were used to confirm the regulation of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. Results: LINC00958 was upregulated in colorectal cancer tissues and cell lines; high LINC00958 level was significantly associated with tumor differentiation, T stage and TNM stage, and also predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and the sensitivity of radiotherapy in vitro, and promoted cell growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA-pull down, RIP and luciferase reporter assays demonstrated that LINC00958 specially targeted miR-422a. In addition, we provided evidence that miR-422a suppressed MAPK1 expression through directly binding to the 3’-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing apoptosis and the radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 on promoting MAPK1 expression and cell proliferation and decreasing apoptosis and the radiosensitivity. Conclusions: LINC00958 promoted MAPK1 expression and cell proliferation and suppressed apoptosis and the radiosensitivity through targeting miR-422a, highlighting a potential biomarker for the prognosis and treatment of colorectal cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hong Liang ◽  
Qiuyan Zhao ◽  
Zhonglin Zhu ◽  
Chao Zhang ◽  
Hui Zhang

Abstract Background Long noncoding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aimed to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. Methods LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The correlations between LINC00958 expression and clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and flow cytometric analyses. RNA pulldown, RIP and luciferase reporter assays were used to confirm the regulatory effects of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. Results LINC00958 was upregulated in colorectal cancer tissues and cell lines. High LINC00958 levels were positively associated with T stage and predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and sensitivity to radiotherapy in vitro and promoted tumor growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA pulldown, RIP and luciferase reporter assays demonstrated that LINC00958 specifically targeted miR-422a. In addition, we found that miR-422a suppressed MAPK1 expression by directly binding to the 3’-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing cell apoptosis and radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 in promoting MAPK1 expression and cell proliferation and decreasing cell apoptosis and radiosensitivity. Conclusions LINC00958 promoted MAPK1 expression and cell proliferation and suppressed cell apoptosis and radiosensitivity by targeting miR-422a, which suggests that it is a potential biomarker for the prognosis and treatment of colorectal cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Zhang ◽  
Xiaomin Li ◽  
Wenjuan Zhang ◽  
Yanxia Lu ◽  
Weihao Lin ◽  
...  

BackgroundWe previously reported that the long non-coding RNA (lncRNA) CASC11 promotes colorectal cancer (CRC) progression as an oncogene by binding to HNRNPK. However, it remains unknown whether CASC11 can act as a competitive endogenous RNA (ceRNA) in CRC. In this study, we focused on the role of CASC11 as a ceRNA in CRC by regulating miR-646 and miR-381-3p targeting of RAB11FIP2.MethodsWe identified the target microRNAs (miRNAs) of CASC11 and the target genes of miR-646 and miR-381-3p using bioinformatic methods. A dual-luciferase reporter assay was performed to validate the target relationship. Quantitative real-time PCR (qRT-PCR), western blotting (WB), and immunohistochemistry (IHC) were used to measure the RNA and protein expression levels. Rescue experiments in vitro and in vivo were performed to investigate the influence of the CASC11/miR-646 and miR-381-3p/RAB11FIP2 axis on CRC progression.ResultsWe found that CASC11 binds to miR-646 and miR-381-3p in the cytoplasm of CRC cells. Moreover, miR-646 and miR-381-3p inhibitors reversed the suppressive effect of CASC11 silencing on CRC growth and metastasis in vitro and in vivo. We further confirmed that RAB11FIP2 is a mutual target of miR-646 and miR-381-3p. The expression levels of CASC11 and RAB11FIP2 in CRC were positively correlated and reciprocally regulated. Further study showed that CASC11 played an important role in regulating PI3K/AKT pathway by miR-646 and miR-381-3p/RAB11FIP2 axis.ConclusionOur study showed that CASC11 promotes the progression of CRC as a ceRNA by sponging miR-646 and miR-381-3p. Thus, CASC11 is a potential biomarker and a therapeutic target of CRC.


2021 ◽  
Author(s):  
Yabin Li ◽  
Xirui Wang ◽  
Zhihuang Zhao ◽  
Jinxing Shang ◽  
Gang Li ◽  
...  

Background: Glioma is the most common malignant tumor in the human central nervous system. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes oncogenesis in various tumors. In the present study, we aimed to examine the role of NEAT1 in altering the properties of gliomas. Methods: Quantitative real-time PCR technology was used to determine the expression levels of relevant genes in tumor tissues and cell lines. The protein expression levels were validated by Western blotting. CCK-8 and colony formation assays were used to test the cell proliferation ability. A luciferase reporter assay was used to determine the interactions of the genes. Tumor xenografts were used to detect the role of NEAT1 in gliomas in vivo. Results: We demonstrated that NEAT1 was upregulated glioma cells and negatively correlated with miR-98-5p in glioma tissues. A potential binding region between NEAT1 and miR-98-5p was confirmed by dual-luciferase assays. NEAT1 knockdown inhibited glioma cell proliferation. The inhibition of miR-98-5p rescued the knockdown of NEAT1 in glioma cells. BZW1 was identified as a direct target of miR-98-5p. We also identified that BZW1 was positively correlated with NEAT1 in glioma tissues. NEAT1 knockdown inhibited glioma cell proliferation in vivo via miR-98-5p/BZW1. Conclusion: Our results suggest that NEAT1 plays an oncogenic function in glioma progression. Targeting NEAT1/miR-98-5p/BZW1 may be a novel therapeutic treatment approach for glioma patients.


2019 ◽  
Vol 97 (6) ◽  
pp. 731-739 ◽  
Author(s):  
Qian Yin ◽  
Pei-Pei Wang ◽  
Rui Peng ◽  
Hang Zhou

Colorectal cancer (CRC) is a devastating disease with high mortality and morbidity, and the underlying mechanisms of miR-19a in CRC are poorly understood. In our study, dual-luciferase reporter assays were used to evaluate the binding of miR-19a with thrombospondin-1 (THBS1). Cell viability, migration, and invasiveness were assessed using MTT, wound healing, and Transwell assays, respectively. Tube-formation assays with human lymphatic endothelial cells (HLECs) were used to evaluate lymphangiogenesis, and tumor xenograft assays were used to measure tumor growth. The results showed that miR-19a was up-regulated and THBS1 was down-regulated in CRC tissues and cells. Applying an inhibitor of miR-19a suppressed survival, migration, and invasiveness, and inhibited the expression of matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor C (VEGFC). Further mechanistic study identified that THBS1 is a direct target of miR-19a. THBS1 silencing attenuated the above-mentioned suppressive effects induced with the miR-19a inhibitor. Furthermore, the miR-19a inhibitor suppressed the migration and tube-formation abilities of HLECs via targeting the THBS1–MMP-9/VEGFC signaling pathway. And the inhibition of miR-19a also suppressed tumor growth and lymphatic tube formation in vivo. In conclusion, miR-19a inhibition suppresses the viability, migration, and invasiveness of CRC cells, and suppresses the migration and tube-formation abilities of HLECs, and further, inhibits tumor growth and lymphatic tube formation in vivo via targeting THBS1.


Author(s):  
Shailendra Shah ◽  
Shaolan Qin ◽  
Yang Luo ◽  
Yizhou Huang ◽  
Ran Jing ◽  
...  

Absent in melanoma 2 (AIM2), a DNA sensor that plays an important role in natural immunity system, has been reported to participate in colorectal cancer (CRC) development. However, the functional role of AIM2 in BRAF-mutant CRC remains unclear. In this study, we first investigated AIM2 expression level in BRAF-mutant CRC tumor tissues. Overexpression of AIM2 in CRC cells was performed to investigate the effect of AIM2 on CRC cell viability, and cell death detection and caspase activity assay were performed to explore the mechanism that AIM2 impacts the growth of BRAF-mutant CRC cells. Moreover, we confirmed the antitumor effect of AIM2 in BRAF-mutant CRC cell-derived tumor xenograft (CDX) models as well as patient-derived organoids (PDOs). Herein, we reported that AIM2 expression was lower in BRAF-mutant than that in BRAF wild-type CRC tumor tissues. Restoring the expression of AIM2 in BRAF-mutant CRC cells greatly inhibits the tumor cell growth by inducing necrotic cell death. Mechanism studies revealed that AIM2-induced cell death is in a caspase-1-dependent manner. Additionally, overexpression of AIM2 significantly inhibits tumor growth and metastasis in BRAF-mutant CRC in vivo, which was further confirmed in BRAF-mutant CRC PDOs. Taken together, our data suggested that AIM2 inhibits BRAF-mutant colon cancer growth in a caspase-1-dependent manner, which may provide evidence to understand the pathogenesis of CRC with BRAF-mutant, as well as new strategies for manipulation of CRC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tiantian Du ◽  
Qinglun Gao ◽  
Yinghui Zhao ◽  
Jie Gao ◽  
Juan Li ◽  
...  

BackgroundColorectal cancer (CRC) is one of the most frequently diagnosed malignancies. Metastasis is the main event that impedes the therapeutic effect on CRC, and its underlying mechanisms remain largely unclear. LINC02474 is a novel long noncoding RNA (lncRNA) associated with metastasis of CRC, while little is known about how LINC02474 regulates these malignant characteristics.MethodsExpressions of LINC02474 and granzyme B (GZMB) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blotting analysis. Cell metastasis was detected by transwell assay and metastatic nude mouse model, and apoptosis was determined by Western blotting analysis and flow cytometry. Besides, the interaction between LINC02474 and GZMB was detected by dual-luciferase reporter assays.ResultsThe expression of LINC02474 was significantly up-regulated in CRC tissues. Moreover, depletion of LINC02474 damaged the metastatic abilities of CRC cells in vivo and in vitro while boosting apoptosis. Besides, up-regulation of LINC02474 could promote migration and invasion, while apoptosis was inhibited in CRC cells. Besides, down-regulation of LINC02474 promoted the expression of GZMB, and interference of GZMB could increase the metastatic abilities of CRC cells while reducing apoptosis. Furthermore, LINC02474 was related to the transcriptional repression of GZMB in CRC cells determined by the dual-luciferase reporter assay.ConclusionsThe findings revealed that a novel lncRNA, LINC02474, as an oncogene, could promote metastasis, but limit apoptosis partly by impeding GZMB expression in CRC. Besides, LINC02474 had the potential to be used as a biomarker in the prognosis of CRC.


Sign in / Sign up

Export Citation Format

Share Document