Dual role of WNT5A in promoting endothelial differentiation of glioma stem cells and angiogenesis of glioma derived endothelial cells

Oncogene ◽  
2021 ◽  
Author(s):  
Taoliang Chen ◽  
Fabing Zhang ◽  
Jie Liu ◽  
Zhilin Huang ◽  
Yaofeng Zheng ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Weiwei Tao ◽  
Chengwei Chu ◽  
Wenchao Zhou ◽  
Zhi Huang ◽  
Kui Zhai ◽  
...  

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Luqia Hou ◽  
John Coller ◽  
Vanita Natu ◽  
Ngan Huang

Human induced pluripotent stem cell (iPSC)-derived endothelial cells (iPSC-ECs) are a promising cell source for vascular regeneration in patients with peripheral arterial disease. However, a critical bottleneck to their clinical translation is the ability to differentiate the cells reproducibly at high yields. Since endothelial cells interact with the basement membrane extracellular matrix (ECM), we sought to examine the role of ECMs on endothelial differentiation using combinatorial ECM microenvironments. ECM microarrays were developed by covalent conjugation of ECMs (gelatin, fibronectin, laminin, heparin sulfate proteoglycans, collagen IV, matrigel) and the multi-component combinations thereof. The pluripotent stem cells attached to the ECMs and subsequently differentiated over the course of 5 days. Endothelial differentiation was semi-quantitatively scored based on the degree of CD31 staining. Our results demonstrated greater levels of CD31staining when cultured on gelatin + matrigel + laminin (G+M+L) or fibronectin + laminin + heparan sulfate (F+L+H), compared to other combinations across three human pluripotent stem cell lines (iPSC-Huf5, iPSC-CON1, and ESC-H1). This enhancement in endothelial differentiation on the microscale was confirmed at larger cell culture platforms in which a marked increase in CD31+ cells was observed in G+M+L modified-dishes (> 5 fold), and F+L+H combination (> 10 fold), compared to gelatin-modified dishes. RT-PCR further confirmed the transcriptional upregulation in endothelial markers for CD31 (> 2 fold) and VE-cadherin (> 4 fold) on G+M+L, compared to gelatin-modified dishes. To elucidate the role of cell-ECM interactions on endothelial differentiation, gene expression of integrin subunits were examined. Gene expression was markedly upregulated in integrins α1 (>10 fold); α4, α5, and αV (>5 fold); and β1, β3 (>50 fold), and β4, when comparing differentiated cells on day14 to undifferentiated cells. The upregulation of integrin subunits was concomitant with upregulation in endothelial genes. Together, this data suggested that combinatorial ECMs differentially promote endothelial differentiation, in part through integrin-mediated pathways.


Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20152147 ◽  
Author(s):  
Teresa Kennedy-Lydon ◽  
Nadia Rosenthal

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.


Cell Cycle ◽  
2018 ◽  
Vol 17 (6) ◽  
pp. 712-721 ◽  
Author(s):  
Anne-Marie Rodriguez ◽  
Jean Nakhle ◽  
Emmanuel Griessinger ◽  
Marie-Luce Vignais

2015 ◽  
Vol 17 (suppl 5) ◽  
pp. v41.3-v41
Author(s):  
Xin Mei ◽  
Yinsheng Chen ◽  
Zhongping Chen

2021 ◽  
Author(s):  
Zhi Huang ◽  
Kui Zhai ◽  
Qiulian Wu ◽  
Xiaoguang Fang ◽  
Qian Huang ◽  
...  

Glioblastoma (GBM) is the most lethal brain tumor containing glioma stem cells (GSCs) that promote malignant growth and therapeutic resistance. The self-renewal and tumorigenic potential of GSCs are maintained by core stem cell transcription factors including SOX2. Defining the posttranslational regulation of SOX2 may offer new insights into GSC biology and potential therapeutic opportunity. Here, we discover that HAUSP stabilizes SOX2 through deubiquitination to maintain GSC self-renewal and tumorigenic potential. HAUSP is preferentially expressed in GSCs in perivascular niches in GBMs. Disrupting HAUSP by shRNA or its inhibitor P22077 promoted SOX2 degradation, induced GSC differentiation, impaired GSC tumorigenic potential, and suppressed GBM tumor growth. Importantly, pharmacological inhibition of HAUSP synergized with radiation to inhibit GBM growth and extended animal survival, indicating that targeting HAUSP may overcome GSC-mediated radioresistance. Our findings reveal an unappreciated crucial role of HAUSP in the GSC maintenance and provide a promising target for developing effective anti-GSC therapeutics to improve GBM treatment.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi49-vi50
Author(s):  
Junxia Zhang ◽  
Tianfu Yu ◽  
Ning Liu

Abstract Glioblastoma (GBM) displays cellular and genetical heterogeneity harboring a subpopulation of glioma stem cells (GSCs). Enhancer of zeste homolog 2 (EZH2), a histone lysine methyltransferase, is the core subunit of the polycomb repressor 2 (PRC2) complex, mediates gene transcriptional repression in both normal and tumor stem cells. An oncogenic role of EZH2 as a PRC2-dependent transcriptional silencer is well established; however, non-canonical functions of EZH2 are incompletely understood. Here we found a novel oncogenic mechanism for EZH2 in a PRC2-indenpend way in GSCs. Using HPLC-MS/MS and IP assay, EZH2 bound to HP1BP3 (heterochromatin protein 1 binding protein 3), a heterochromatin-related protein, with its pre-SET domain. Overexpression of H1P3B3 enhanced the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Intriguingly, H1PBP3 was up-regulated in high grade gliomas with proneural (PN) subtypes and had a high predictive value on prognosis in patients with PN gliomas. Furthermore, EZH2 and HP1BP3 co-activated the expression of WNT7B by blocking the methylation of H3K9, thereby increasing TMZ resistance and tumorigenicity of glioblastoma cells. Interestingly, inhibition of WNT7B autocrine via LGK974, a specific porcupine inhibitor, effectively reversed the TMZ resistance of both GSCs and GBM glioma cells expressing HP1BP3. Hence, targeting the PRC2-independent function of EZH2 is an effective approach to enhance the efficacy of treating GBM.


Sign in / Sign up

Export Citation Format

Share Document