scholarly journals HAUSP Stabilizes SOX2 through Deubiquitination to Maintain Self-renewal and Tumorigenic Potential of Glioma Stem Cells

2021 ◽  
Author(s):  
Zhi Huang ◽  
Kui Zhai ◽  
Qiulian Wu ◽  
Xiaoguang Fang ◽  
Qian Huang ◽  
...  

Glioblastoma (GBM) is the most lethal brain tumor containing glioma stem cells (GSCs) that promote malignant growth and therapeutic resistance. The self-renewal and tumorigenic potential of GSCs are maintained by core stem cell transcription factors including SOX2. Defining the posttranslational regulation of SOX2 may offer new insights into GSC biology and potential therapeutic opportunity. Here, we discover that HAUSP stabilizes SOX2 through deubiquitination to maintain GSC self-renewal and tumorigenic potential. HAUSP is preferentially expressed in GSCs in perivascular niches in GBMs. Disrupting HAUSP by shRNA or its inhibitor P22077 promoted SOX2 degradation, induced GSC differentiation, impaired GSC tumorigenic potential, and suppressed GBM tumor growth. Importantly, pharmacological inhibition of HAUSP synergized with radiation to inhibit GBM growth and extended animal survival, indicating that targeting HAUSP may overcome GSC-mediated radioresistance. Our findings reveal an unappreciated crucial role of HAUSP in the GSC maintenance and provide a promising target for developing effective anti-GSC therapeutics to improve GBM treatment.

2016 ◽  
Vol 214 (1) ◽  
pp. 245-267 ◽  
Author(s):  
Xiaoguang Fang ◽  
Wenchao Zhou ◽  
Qiulian Wu ◽  
Zhi Huang ◽  
Yu Shi ◽  
...  

Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A–c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc.


Author(s):  
S. Mansouri ◽  
S. Singh ◽  
A. Alamsahebpour ◽  
K. Burrell ◽  
M. Li ◽  
...  

The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently down-regulated in a variety of malignancies. We characterized the role of Dicer in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells to form tumors in a mouse model of GB. DICER silencing in glioma stem-like cells (GSCs) reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER affects the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2020 ◽  
Vol 34 (4) ◽  
pp. 5128-5143
Author(s):  
Lilei Peng ◽  
Yang Ming ◽  
Ling Zhang ◽  
Jie Zhou ◽  
Wei Xiang ◽  
...  

2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi49-vi50
Author(s):  
Junxia Zhang ◽  
Tianfu Yu ◽  
Ning Liu

Abstract Glioblastoma (GBM) displays cellular and genetical heterogeneity harboring a subpopulation of glioma stem cells (GSCs). Enhancer of zeste homolog 2 (EZH2), a histone lysine methyltransferase, is the core subunit of the polycomb repressor 2 (PRC2) complex, mediates gene transcriptional repression in both normal and tumor stem cells. An oncogenic role of EZH2 as a PRC2-dependent transcriptional silencer is well established; however, non-canonical functions of EZH2 are incompletely understood. Here we found a novel oncogenic mechanism for EZH2 in a PRC2-indenpend way in GSCs. Using HPLC-MS/MS and IP assay, EZH2 bound to HP1BP3 (heterochromatin protein 1 binding protein 3), a heterochromatin-related protein, with its pre-SET domain. Overexpression of H1P3B3 enhanced the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Intriguingly, H1PBP3 was up-regulated in high grade gliomas with proneural (PN) subtypes and had a high predictive value on prognosis in patients with PN gliomas. Furthermore, EZH2 and HP1BP3 co-activated the expression of WNT7B by blocking the methylation of H3K9, thereby increasing TMZ resistance and tumorigenicity of glioblastoma cells. Interestingly, inhibition of WNT7B autocrine via LGK974, a specific porcupine inhibitor, effectively reversed the TMZ resistance of both GSCs and GBM glioma cells expressing HP1BP3. Hence, targeting the PRC2-independent function of EZH2 is an effective approach to enhance the efficacy of treating GBM.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


BMC Cancer ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianhong Zhu ◽  
Handong Wang ◽  
Qing Sun ◽  
Xiangjun Ji ◽  
Lin Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document