scholarly journals p53 partial loss-of-function mutations sensitize to chemotherapy

Oncogene ◽  
2021 ◽  
Author(s):  
Boris Klimovich ◽  
Nastasja Merle ◽  
Michelle Neumann ◽  
Sabrina Elmshäuser ◽  
Andrea Nist ◽  
...  

AbstractThe tumor suppressive transcription factor p53 is frequently inactivated in cancer cells by missense mutations that cluster in the DNA binding domain. 30% hit mutational hotspot residues, resulting in a complete loss of transcriptional activity and mutant p53-driven chemotherapy resistance. Of the remaining 70% of non-hotspot mutants, many are partial loss-of-function (partial-LOF) mutants with residual transcriptional activity. The therapeutic consequences of a partial-LOF have remained largely elusive. Using a p53 mutation engineered to reduce DNA binding, we demonstrate that partial-LOF is sufficient to enhance oncogene-driven tumorigenesis in mouse models of lung and pancreatic ductal adenocarcinoma and acute myeloid leukemia. Interestingly, mouse and human tumors with partial-LOF mutations showed mutant p53 protein accumulation similar as known for hotspot mutants. Different from the chemotherapy resistance caused by p53-loss, the partial-LOF mutant sensitized to an apoptotic chemotherapy response and led to a survival benefit. Mechanistically, the pro-apoptotic transcriptional activity of mouse and human partial-LOF mutants was rescued at high mutant protein levels, suggesting that accumulation of partial-LOF mutants enables the observed apoptotic chemotherapy response. p53 non-hotspot mutants with partial-LOF, therefore, represent tumorigenic p53 mutations that need to be distinguished from other mutations because of their beneficial impact on survival in a therapy context.

2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2019 ◽  
Vol 3 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Arnold J. Levine

Half of all human cancers contain TP53 mutations, and in many other cancers, the function of the p53 protein is compromised. The diversity of these mutations and phenotypes presents a challenge to the development of drugs that target p53 mutant cancer cells. This review describes the rationale for many different approaches in the development of p53 targeted therapies: ( a) viruses and gene therapies, ( b) increased levels and activity of wild-type p53 proteins in cancer cells, ( c) p53 protein gain-of-function inhibitors, ( d) p53 protein loss-of-function structural correctors, ( e) mutant p53 protein synthetic lethal drugs interfering with the p53 pathway, and ( f) cellular immune responses to mutant p53 protein antigens. As these types of therapies are developed, tested, and evaluated, the best of them will have a significant impact upon cancer treatments and possibly prevention.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Shinjinee Sengupta ◽  
Samir K. Maji ◽  
Santanu K. Ghosh

ABSTRACT Loss of p53 function is largely responsible for the occurrence of cancer in humans. Aggregation of mutant p53 has been found in multiple cancer cell types, suggesting a role of aggregation in loss of p53 function and cancer development. The p53 protein has recently been hypothesized to possess a prion-like conformation, although experimental evidence is lacking. Here, we report that human p53 can be inactivated upon exposure to preformed fibrils containing an aggregation-prone sequence-specific peptide, PILTIITL, derived from p53, and the inactive state was found to be stable for many generations. Importantly, we provide evidence of a prion-like transmission of these p53 aggregates. This study has significant implications for understanding cancer progression due to p53 malfunctioning without any loss-of-function mutation or occurrence of transcriptional inactivation. Our data might unlock new possibilities for understanding the disease and will lead to rational design of p53 aggregation inhibitors for the development of drugs against cancer.


Cell Cycle ◽  
2019 ◽  
Vol 18 (24) ◽  
pp. 3442-3455 ◽  
Author(s):  
Yuan Huang ◽  
Nannan Liu ◽  
Jing Liu ◽  
Yeying Liu ◽  
Chuchu Zhang ◽  
...  

Oncogene ◽  
2012 ◽  
Vol 32 (34) ◽  
pp. 4009-4016 ◽  
Author(s):  
L Guo ◽  
H P Liew ◽  
S Camus ◽  
A M Goh ◽  
L L Chee ◽  
...  

Cell Cycle ◽  
2009 ◽  
Vol 8 (10) ◽  
pp. 1603-1615 ◽  
Author(s):  
Jinwoo Ahn ◽  
Masha V. Poyurovsky ◽  
Nicole Baptiste ◽  
Rachel Beckerman ◽  
Christine Cain ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (18) ◽  
pp. 10015
Author(s):  
Yuki Sakai ◽  
Kenji Ohba ◽  
Shigekazu Sasaki ◽  
Akio Matsushita ◽  
Hiroko Misawa Nakamura ◽  
...  

The transcription factor GATA2 regulates gene expression in several cells and tissues, including hematopoietic tissues and the central nervous system. Recent studies revealed that loss-of-function mutations in GATA2 are associated with hematological disorders. Our earlier in vitro studies showed that GATA2 plays an essential role in the hypothalamus–pituitary–thyroid axis (HPT axis) by regulating the genes encoding prepro-thyrotropin-releasing hormone (preproTRH) and thyroid-stimulating hormone β (TSHβ). However, the effect of GATA2 mutants on the transcriptional activity of their promoters remains unelucidated. In this study, we created five human GATA2 mutations (R308P, T354M, R396Q, R398W, and S447R) that were reported to be associated with hematological disorders and analyzed their functional properties, including transactivation potential and DNA-binding capacity toward the preproTRH and the TSHβ promoters. Three mutations (T354M, R396Q, and R398W) within the C-terminal zinc-finger domain reduced the basal GATA2 transcriptional activity on both the preproTRH and the TSHβ promoters with a significant loss of DNA binding affinity. Interestingly, only the R398W mutation reduced the GATA2 protein expression. Subsequent analysis demonstrated that the R398W mutation possibly facilitated the GATA2 degradation process. R308P and S447R mutants exhibited decreased transcriptional activity under protein kinase C compared to the wild-type protein. In conclusion, we demonstrated that naturally occurring GATA2 mutations impair the HPT axis through differential functional mechanisms in vitro.


Author(s):  
Shengliang Zhang ◽  
Lindsey Carlsen ◽  
Liz Hernandez Borrero ◽  
Attila A. Seyhan ◽  
Xiaobing Tian ◽  
...  

TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli and upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. P53 is the most frequently mutated gene in tumors with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) which promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for 1) boosting p53 activity in cancer, 2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, 3) targeting p53 in immunotherapy, and 4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document