scholarly journals MT1G serves as a tumor suppressor in hepatocellular carcinoma by interacting with p53

Oncogenesis ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Yingchao Wang ◽  
Gaoxiong Wang ◽  
Xionghong Tan ◽  
Kun Ke ◽  
Bixing Zhao ◽  
...  

AbstractPoor prognosis of hepatocellular carcinoma (HCC) patients is frequently associated with rapid tumor growth, recurrence and drug resistance. MT1G is a low-molecular weight protein with high affinity for zinc ions. In the present study, we investigated the expression of MT1G, analyzed clinical significance of MT1G, and we observed the effects of MT1G overexpression on proliferation and apoptosis of HCC cell lines in vitro and in vivo. Our results revealed that MT1G was significantly downregulated in tumor tissues, and could inhibit the proliferation as well as enhance the apoptosis of HCC cells. The mechanism study suggested that MT1G increased the stability of p53 by inhibiting the expression of its ubiquitination factor, MDM2. Furthermore, MT1G also could enhance the transcriptional activity of p53 through direct interacting with p53 and providing appropriate zinc ions to p53. The modulation of MT1G on p53 resulted in upregulation of p21 and Bax, which leads cell cycle arrest and apoptosis, respectively. Our in vivo assay further confirmed that MT1G could suppress HCC tumor growth in nude mice. Overall, this is the first report on the interaction between MT1G and p53, and adequately uncover a new HCC suppressor which might have therapeutic values by diminishing the aggressiveness of HCC cells.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored.Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism.Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decrease Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU.Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


2016 ◽  
Vol 29 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Pei-Hao Wen ◽  
Dong-Yu Wang ◽  
Jia-Kai Zhang ◽  
Zhi-Hui Wang ◽  
Jie Pan ◽  
...  

Kruppel-like factor 6 (KLF6) as a novel tumor suppressive gene participates in multiple biological behaviors and plays an important role in regulating tumor cell growth and invasion. However, the functions of KLF6 in hepatocellular carcinoma (HCC) remain poorly understood. The expression level of KLF6 was examined by immunohistochemical assay in human HCC tissues, and KLF6-overexpressed HCC cells (SMCC-7721 and HepG2) were used for evaluating cell proliferation and invasion by MTT and Transwell assays. A subcutaneous HCC tumor model was established for assessing tumor growth in vivo. Our results showed that the expression of KLF6 was significantly downregulated in HCC tissues compared with the adjacent non-cancerous tissues (50.0% vs. 72.0%, P = 0.034) and negatively associated with the lymph-vascular space invasion (LVSI) in HCC patients ( P = 0.003). Furthermore, overexpression of KLF6 reduced cell proliferation and weakened the cell invasive potential followed with the decreased expression of PCNA and MMP-9 in HCC cells. The in vivo experiment indicated that KLF6 overexpression suppressed the xenograft tumor growth. Therefore, our findings show that KLF6 suppresses growth and invasion of HCC cells in vitro and in vivo, suggesting a tumor suppressive function in HCC and provides the potential therapeutic target for the treatment of HCC.


2021 ◽  
Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background: Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored. Methods: Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism. Results: It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decreased Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU. Conclusions: ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


Author(s):  
Li Zhang ◽  
Zongtao Chai ◽  
Siyuan Kong ◽  
Jiling Feng ◽  
Man Wu ◽  
...  

Hepatocellular carcinoma (HCC) is one of the malignant tumors with poor prognosis. High expression level of cofilin 1 (CFL1) has been found in many types of cancers. However, the role of CFL1 in HCC hasn’t been known clearly. Here, we found that CFL1 was up regulated in human HCC and significantly associated with both overall survival and disease-free survival in HCC patients. Nujiangexanthone A (NJXA), the caged xanthones, isolated from gamboge plants decreased the expression of CFL1, which also inhibited the migration, invasion and metastasis of HCC cells in vitro and in vivo. Down regulation of CFL1 inhibited aggressiveness of HCC cells, which mimicked the effect of NJXA. Mechanism study indicated that, knockdown of CFL1 or treatment with NJXA increased the level of F-actin and disturbed the balance between F-actin and G-actin. In conclusion, our findings reveal the role of CFL1 in HCC metastasis through the CFL1/F-actin axis, and suggest that CFL1 may be a potential prognostic marker and a new therapeutic target. NJXA can effectively inhibit the metastasis of HCC cells by down regulating the expression of CFL1, which indicates the potential of NJXA for preventing metastasis in HCC.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5639
Author(s):  
Xiao-Fan Huang ◽  
Gwo-Tarng Sheu ◽  
Kai-Fu Chang ◽  
Ya-Chih Huang ◽  
Pei-Hsiu Hung ◽  
...  

The purpose of the study was to elucidate the anti-hepatoma effects and mechanisms of Pogostemon cablin essential oils (PPa extract) in vitro and in vivo. PPa extract exhibited an inhibitory effect on hepatocellular carcinoma (HCC) cells and was less cytotoxic to normal cells, especially normal liver cells, than it was to HCC cells, exerting a good selective index. Additionally, PPa extract inhibited HCC cell growth by blocking the cell cycle at the G0/G1 phase via p53 dependent or independent pathway to down regulated cell cycle regulators. Moreover, PPa extract induced the FAS-FASL-caspase-8 system to activate the extrinsic apoptosis pathway, and it increased the bax/bcl-2 ratio and reduced ΔΨm to activate the intrinsic apoptosis pathway that might be due to lots of reactive oxygen species (ROS) production which was induced by PPa extract. In addition, PPa extract presented to the potential to act synergistically with sorafenib to effectively inhibit HCC cell proliferation through the Akt/mTOR pathway and reduce regrowth of HCC cells. In an animal model, PPa extract suppressed HCC tumor growth and prolonged lifespan by reducing the VEGF/VEGFR axis and inducing tumor cell apoptosis in vivo. Ultimately, PPa extract demonstrated nearly no or low system-wide, physiological, or pathological toxicity in vivo. In conclusion, PPa extract effectively inhibited HCC cell growth through inducing cell cycle arrest and activating apoptosis in vitro and in vivo. Furthermore, PPa extract exhibits less toxicity toward normal cells and organs than it does toward HCC cells, which might lead to fewer side effects in clinical applications. PPa extract may be developed into a clinical drug to suppress tumor growth or functional food to prevent HCC initiation or chemoprotection of HCC recurrence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xing Liu ◽  
Pingsheng Zhou ◽  
Keqing He ◽  
Zhili Wen ◽  
Yong Gao

Background: The etiology and carcinogenesis of hepatocellular carcinoma (HCC) are associated with various risk factors. Saponins extracted from Dioscorea zingiberensis C. H. Wright exhibit antitumor activity against HCC. This study aimed to investigate the effect and the underlying mechanism of Dioscorea Zingiberensis new saponin (ZnS) on HCC.Methods: Human HCC cell lines, Huh7 and SMMC-7721, were treated with different concentrations of ZnS. Cell apoptosis was determined via flow cytometry assay. Differentially expressed lncRNAs (DElncRNAs) in ZnS-treated SMMC-7721 cells were determined through RNA-sequence. The role of lncRNA TCONS-00026762 in HCC was investigated gain of function analysis, along with cell proliferation, apoptosis, and invasion in HCC cells. A subcutaneous xenograft of SMMC-7721 cell lines was established to study the effects of TCONS-00026762 in vivo. The expression of apoptosis-related proteins was detected in vivo and in vitro via western blotting.Results: ZnS inhibited the proliferation of HCC cell in a dose-dependent manner. ZnS could induce apoptosis in HCC cells. Illumina sequencing results showed that 493 DElncRNAs were identified in ZnS-treated SMMC-7721 cells. TCONS-00026762 expression was down-regulated in the ZnS-treated SMMC-7721 cells. TCONS-00026762 inhibited the effect of ZnS on the proliferation, apoptosis, and invasion of HCC cells. ZnS inhibited the tumor growth, while, TCONS-00026762 promoted tumor growth in vivo. Furthermore, ZnS and TCONS-00026762 regulated cell apoptotic pathways.Conclusion: ZnS significantly inhibits the viability, apoptosis, invasion, and tumorigenicity of HCC cells by regulating the expression of TCONS-00026,762. Our findings provide novel insights into the potential role of lncRNA in HCC therapy.


2020 ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective: Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods: CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Human HCC tissues were collected to study the clinical significance VPS35 and β-catenin. Results: Firstly, KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Conclusion: We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


Author(s):  
Qian Chen ◽  
Xiao-Wei Zhou ◽  
Ai-Jun Zhang ◽  
Kang He

Abstract Background Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored. Methods Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism. Results It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decreased Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU. Conclusions ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document