scholarly journals Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics

2020 ◽  
Vol 14 (4) ◽  
pp. 906-918 ◽  
Author(s):  
Liping Hao ◽  
Thomas Yssing Michaelsen ◽  
Caitlin Margaret Singleton ◽  
Giulia Dottorini ◽  
Rasmus Hansen Kirkegaard ◽  
...  

AbstractShort-chain fatty acid (SCFA) degradation is an important process in methanogenic ecosystems, and is usually catalyzed by SCFA-oxidizing bacteria in syntrophy with methanogens. Current knowledge of this functional guild is mainly based on isolates or enrichment cultures, but these may not reflect the true diversity and in situ activities of the syntrophs predominating in full-scale systems. Here we obtained 182 medium to high quality metagenome-assembled genomes (MAGs) from the microbiome of two full-scale anaerobic digesters. The transcriptomic response of individual MAG was studied after stimulation with low concentrations of acetate, propionate, or butyrate, separately. The most pronounced response to butyrate was observed for two MAGs of the recently described genus Candidatus Phosphitivorax (phylum Desulfobacterota), expressing a butyrate beta-oxidation pathway. For propionate, the largest response was observed for an MAG of a novel genus in the family Pelotomaculaceae, transcribing a methylmalonyl-CoA pathway. All three species were common in anaerobic digesters at Danish wastewater treatment plants as shown by amplicon analysis, and this is the first time their syntrophic features involved in SCFA oxidation were revealed with transcriptomic evidence. Further, they also possessed unique genomic features undescribed in well-characterized syntrophs, including the metabolic pathways for phosphite oxidation, nitrite and sulfate reduction.

2017 ◽  
Vol 43 (3) ◽  
pp. 53-60 ◽  
Author(s):  
Piotr Świątczak ◽  
Agnieszka Cydzik-Kwiatkowska ◽  
Paulina Rusanowska

AbstractAnaerobic digestion is an important technology for the bio-based economy. The stability of the process is crucial for its successful implementation and depends on the structure and functional stability of the microbial community. In this study, the total microbial community was analyzed during mesophilic fermentation of sewage sludge in full-scale digesters.The digesters operated at 34–35°C, and a mixture of primary and excess sludge at a ratio of 2:1 was added to the digesters at 550 m3/d, for a sludge load of 0.054 m3/(m3·d). The amount and composition of biogas were determined. The microbial structure of the biomass from the digesters was investigated with use of next-generation sequencing.The percentage of methanogens in the biomass reached 21%, resulting in high quality biogas (over 61% methane content). The abundance of syntrophic bacteria was 4.47%, and stable methane production occurred at a Methanomicrobia to Synergistia ratio of 4.6:1.0. The two most numerous genera of methanogens (about 11% total) wereMethanosaetaandMethanolinea, indicating that, at the low substrate loading in the digester, the acetoclastic and hydrogenotrophic paths of methane production were equally important. The high abundance of the orderBacteroidetes, including the classCytophagia(11.6% of all sequences), indicated the high potential of the biomass for efficient degradation of lignocellulitic substances, and for degradation of protein and amino acids to acetate and ammonia.This study sheds light on the ecology of microbial groups that are involved in mesophilic fermentation in mature, stably-performing microbiota in full-scale reactors fed with sewage sludge under low substrate loading.


2017 ◽  
Author(s):  
Rasmus H. Kirkegaard ◽  
Simon J. McIlroy ◽  
Jannie M. Kristensen ◽  
Marta Nierychlo ◽  
Søren M. Karst ◽  
...  

AbstractAnaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty-two full-scale digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the active microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual plants surveyed were remarkably similar – with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as likely inactive immigrating microbes. By identifying the abundant and active taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in-depth understanding of the microbial ecology of these biotechnologically important systems.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 35-43
Author(s):  
K. D. Tracy ◽  
S. N. Hong

The anaerobic selector of the A/0™ process offers many advantages over conventional activated sludge processes with respect to process performance and operational stability. This high-rate, single-sludge process has been successfully demonstrated in full-scale operations for biological phosphorus removal and total nitrogen control in addition to BOD and TSS removal. This process can be easily utilized in upgrading existing treatment plants to meet stringent discharge limitations and to provide capacity expansion. Upgrades of two full-scale installations are described and performance data from the two facilities are presented.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


2021 ◽  
Vol 414 ◽  
pp. 125490
Author(s):  
Yuli Qian ◽  
Xuebing Wang ◽  
Gang Wu ◽  
Liye Wang ◽  
Jinju Geng ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 502
Author(s):  
Andrea Visca ◽  
Anna Barra Caracciolo ◽  
Paola Grenni ◽  
Luisa Patrolecco ◽  
Jasmin Rauseo ◽  
...  

Anaerobic digestion is one of the best ways to re-use animal manure and agricultural residues, through the production of combustible biogas and digestate. However, the use of antibiotics for preventing and treating animal diseases and, consequently, their residual concentrations in manure, could introduce them into anaerobic digesters. If the digestate is applied as a soil fertilizer, antibiotic residues and/or their corresponding antibiotic resistance genes (ARGs) could reach soil ecosystems. This work investigated three common soil emerging contaminants, i.e., sulfamethoxazole (SMX), ciprofloxacin (CIP), enrofloxacin (ENR), their ARGs sul1, sul2, qnrS, qepA, aac-(6′)-Ib-cr and the mobile genetic element intI1, for one year in a full scale anaerobic plant. Six samplings were performed in line with the 45-day hydraulic retention time (HRT) of the anaerobic plant, by collecting input and output samples. The overall results show both antibiotics and ARGs decreased during the anaerobic digestion process. In particular, SMX was degraded by up to 100%, ENR up to 84% and CIP up to 92%, depending on the sampling time. In a similar way, all ARGs declined significantly (up to 80%) in the digestate samples. This work shows how anaerobic digestion can be a promising practice for lowering antibiotic residues and ARGs in soil.


Sign in / Sign up

Export Citation Format

Share Document