scholarly journals Identification of a novel c-Myc inhibitor with antitumor effects on multiple myeloma cells

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Ruosi Yao ◽  
Xiaoyang Sun ◽  
Yu Xie ◽  
Xiaoshen Sun ◽  
Yao Yao ◽  
...  

Increasing evidence shows that c-Myc oncoprotein is tightly associated with multiple myeloma (MM) progression. Herein, we identified compound 7594-0035, which is a novel inhibitor that specifically targets c-Myc. It was identified from the ChemDiv compound database by molecular docking-based, high-throughput virtual screening. Compound 7594-0035 inhibited MM cell proliferation in vitro, induced cell cycle G2-phase arrest, and triggered MM cell death by disturbing the stability of c-Myc protein. Additionally, we also found that compound 7594-0035 overcame bortezomib (BTZ) drug resistance and increased the killing effect on MM cells in combination with BTZ. The severe combined immune deficiency (SCID) mouse xenograft model revealed that compound 7594-0035 partially decreased the primary tumor growth of Roswell Park Memorial Institute (RPMI)-8226 cells in vivo. The novel small molecular compound 7594-0035 described in the present study that targets c-Myc protein is likely to be a promising therapeutic agent for relapsed/refractory MM.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4181-4187 ◽  
Author(s):  
Patrick Frost ◽  
Farhad Moatamed ◽  
Bao Hoang ◽  
Yijiang Shi ◽  
Joseph Gera ◽  
...  

Abstract In vitro studies indicate the therapeutic potential of mTOR inhibitors in treating multiple myeloma. To provide further support for this potential, we used the rapamycin analog CCI-779 in a myeloma xenograft model. CCI-779, given as 10 intraperitoneal injections, induced significant dose-dependent, antitumor responses against subcutaneous growth of 8226, OPM-2, and U266 cell lines. Effective doses of CCI-779 were associated with modest toxicity, inducing only transient thrombocytopenia and leukopenia. Immunohistochemical studies demonstrated the antitumor responses were associated with inhibited proliferation and angiogenesis, induction of apoptosis, and reduction in tumor cell size. Although CCI-779-mediated inhibition of the p70 mTOR substrate was equal in 8226 and OPM-2 tumor nodules, OPM-2 tumor growth was considerably more sensitive to inhibition of proliferation, angiogenesis, and induction of apoptosis. Furthermore, the OPM-2 tumors from treated mice were more likely to show down-regulated expression of cyclin D1 and c-myc and up-regulated p27 expression. Because earlier work suggested heightened AKT activity in OPM-2 tumors might induce hypersensitivity to mTOR inhibition, we directly tested this by stably transfecting a constitutively active AKT allele into U266 cells. The in vivo growth of the latter cells was remarkably more sensitive to CCI-779 than the growth of control U266 cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4223-4223
Author(s):  
Catherine A Taylor ◽  
Terence Tang ◽  
Zhongda Liu ◽  
Sarah Francis ◽  
Zheng Qifa ◽  
...  

Abstract Abstract 4223 SNS01-T is a novel nanoparticle that is designed to selectively initiate apoptosis in B-cell cancers such as multiple myeloma and B-cell lymphomas. SNS01-T is comprised of a plasmid encoding a pro-apoptotic form of the eukaryotic translation initiation factor 5A (eIF5A) containing a single-point mutation that prevents hypusination, an siRNA that inhibits expression of the pro-survival hypusine-eIF5A protein, and a polymer that serves to assemble the nucleic acids into a nanoparticle. SNS01-T is currently being investigated in a multi-site, open-label Phase1b/2a dose escalation study in subjects with relapsed or refractory multiple myeloma (MM). SNS01-T and its preclinical precursors have been studied extensively in multiple myeloma and B cell lymphoma tumor models. In this study we tested the in vitro and in vivo anti-cancer activity of SNS01-T in combination with the immunomodulatory drug lenalidomide. The combination of low doses of SNS01-T and lenalidomide synergistically reduced viability of RPMI 8226 MM cells and induced apoptosis to a greater degree than either drug alone. To determine whether SNS01-T treatment increases the anti-myeloma activity of lenalidomide in vivo, 0.375 mg/kg SNS01-T was combined with either 15 or 50 mg/kg lenalidomide in a RPMI 8226 xenograft model of multiple myeloma. Mice were dosed for two cycles of treatment for a total of 11 weeks of dosing. Mice with no measurable tumor at the end of the first cycle of treatment did not receive treatment in the second cycle but were monitored closely for tumor recurrence. A two-week observation period at the end of the study allowed monitoring of tumor growth after the cessation of the second cycle of treatment. At the end of the second cycle of dosing, tumor growth was inhibited by 84 % (p < 0.0001), 34 % (p = 0.05), and 98.1 % (p << 0.0001) in animals treated with SNS01-T, 50 mg/kg lenalidomide, and SNS01-T plus 50 mg/kg lenalidomide, respectively. Complete tumor regression (undetectable tumor) was achieved in 40% of mice treated with SNS01-T, 0% of mice treated with 50 mg/kg lenalidomide, and 83% of mice treated with the combination therapy of SNS01-T and 50 mg/kg lenalidomide. Complete regression of tumors treated with the combination therapy was maintained for more than 8 weeks without treatment until the end of the study in 4 of 6 (67%) of treated mice. Combining SNS01-T treatment with 50 mg/kg lenalidomide inhibited tumor growth more effectively than either drug alone and prolonged survival with 100% of mice surviving to the end of the 102-day study. Combination therapy with SNS01-T and 15 mg/kg lenalidomide also demonstrated significant activity in a murine JMV-2 mantle cell lymphoma (MCL) xenograft model. Treatment of mice with the drug combination of SNS01-T and lenalidomide resulted in a statistically significant increase in survival compared to either SNS01-T (p = 0.002; logrank test) or lenalidomide (p = 0.007) alone. Collectively, these preclinical studies indicate that the combination therapy of SNS01-T and lenalidomide is well tolerated, has significant activity against MM and MCL, and provides a strong rationale to evaluate SNS01-T and lenalidomide combination therapy to improve patient outcome in MM and B cell lymphomas. Disclosures: Taylor: Senesco Technologies Inc.: stock options Other. Dondero:Senesco Technologies Inc.: Employment. Thompson:Senesco Technologies Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 8106-8106 ◽  
Author(s):  
M. Tesar

8106 MOR202 is one of MorphoSys’ internal development programs targeting the cell surface antigen CD38 that is found to be expressed on various cell lines derived from B cell, T cell, and myeloid/monocytic tumors. Especially in the indication of multiple myeloma (MM), which remains an incurable malignancy with a median survival of 3–4 years, a strong expression has been reported in the majority of patients’ tumor samples. CD38-specific human antibodies were selected from MorphoSys’ proprietary HuCAL GOLD phage display library by cell panning strategies. A lead candidate (MOR202) was selected from several antibodies recognizing different epitopes on CD38 and subjected to further in vitro and in vivo characterization as follows: MOR202 exhibits an affinity in the low nanomolar range, recognizes CD38 on many cell lines of different cancer origin and most importantly on all primary MM-patient samples in FACS and IHC. The fully human IgG1 MOR202 is able to kill CD38-expressing cell lines and primary MM cells from patients efficiently by ADCC in a concentration-dependent manner, whereas early progenitor cells are not affected as demonstrated by a clonogenic assay. Finally, excellent efficacy could be shown in a SCID-mouse xenograft model, resulting in significantly reduced tumour growth (RPMI8226) and overall survival, which was even superior to bortezomib tested in the same model. No significant financial relationships to disclose.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yang Cao ◽  
Huizhuang Shan ◽  
Meng Liu ◽  
Jia Liu ◽  
Zilu Zhang ◽  
...  

AbstractDespite the significant advances in the treatment of multiple myeloma (MM), this disease is still considered incurable because of relapse and chemotherapy resistance, underscoring the need to seek novel therapies with different mechanisms. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging antitumor activity in several preclinical and clinical trials, but its effect on MM has not been studied yet. In this study, we found that anlotinib exhibits encouraging cytotoxicity in MM cells, overcomes the protective effect of the bone marrow microenvironment and suppresses tumor growth in the MM mouse xenograft model. We further examined the underlying molecular mechanism and found that anlotinib provokes cell cycle arrest, induces apoptosis and inhibits multiple signaling pathways. Importantly, we identify c-Myc as a novel direct target of anlotinib. The enhanced ubiquitin proteasomal degradation of c-Myc contributes to the cell apoptosis induced by anlotinib. In addition, anlotinib also displays strong cytotoxicity against bortezomib-resistant MM cells. Our study demonstrates the extraordinary anti-MM effect of anlotinib both in vitro and in vivo, which provides solid evidence and a promising rationale for future clinical application of anlotinib in the treatment of human MM.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. Results We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. Conclusion LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fengjie Jiang ◽  
Xiaozhu Tang ◽  
Chao Tang ◽  
Zhen Hua ◽  
Mengying Ke ◽  
...  

AbstractN6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simeng Zhang ◽  
Zhongyan Hua ◽  
Gen Ba ◽  
Ning Xu ◽  
Jianing Miao ◽  
...  

Abstract Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB.


Sign in / Sign up

Export Citation Format

Share Document