scholarly journals Beyond DNA repair and chromosome instability—Fanconi anaemia as a cellular senescence-associated syndrome

Author(s):  
Anne Helbling-Leclerc ◽  
Cécile Garcin ◽  
Filippo Rosselli

AbstractFanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a “senescence syndrome”.

2014 ◽  
Vol 94 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Hemanth Tummala ◽  
Michael Kirwan ◽  
Amanda J. Walne ◽  
Upal Hossain ◽  
Nicholas Jackson ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 698-698
Author(s):  
Kyaw Zeya Maung ◽  
James X Gray ◽  
Paul J Leo ◽  
Mahmoud Bassal ◽  
Anna L Brown ◽  
...  

Abstract Introduction - AML is a complex group of malignancies, with heterogeneity in morphology, cytogenetics, molecular characteristics, aggressiveness and importantly, in its response to treatment and survival outcomes. Next generation sequencing by the Cancer Genome Atlas Research Network analysed 200 primary AML cases and identified 23 genes that display recurrent somatic mutations at varying frequency in AML (NEJM 368(22):2059-2074). Defects in DNA repair are frequently identified in treatment-related AML and inherited mutations in genes of DNA repair pathways predispose patients to myeloid malignancies. For example, biallelic mutations in FANC genes, which cause the recessive heritable bone marrow failure syndrome Fanconi Anaemia (FA) are associated with high risk of progression to AML and other cancers (Kutler et al.Blood, 101:1249-1256), suggesting a potential involvement of FANC gene mutations in AML pathogenesis. Methods - In this study we present a two-stage approach to gene discovery in AML: initial unbiased whole genome sequence (WGS) and whole exome sequence (WES) analysis of tumour DNA from a cytogenetically normal AML case at diagnosis and relapse, and corresponding germ-line DNA (prepared from mesenchymal stromal cells). Potential oncogenic mutations and changes associated with disease progression were identified. WES of a further 96 diagnostic AML samples further defined recurrent mutations and allowed identification of affected functional groups and networks in AML. Results – WGS and WES were performed on diagnosis, non-haematopoietic and relapse samples from an index AML patient. Somatic SNVs and indels unique to the tumour samples include a number of variants in genes previously reported as recurrently somatically mutated in AML including FLT3, WT1 and IDH2. Somatic mutations in genes not previously associated with AML were also identified including a mutation in FANCD2 (p.S1412N) present in the index AML tumour DNA at diagnosis and at relapse. Variants in genes recurrently mutated at low frequency in AML can also be disease drivers, however separating such genes from the background level of mutation in AML requires analysis across multiple samples, and sequencing studies to determine recurrence and/or mutations in proteins involved in the same functional pathway or complex. STRING-db v9.05 (Franceschini et al. NAR, 2013(41), Database issue) was used to identify a larger network of proteins, including and associated with the FANC genes, involved in homologous recombination-mediated DNA repair. Known somatic mutations from other AML studies were mapped onto this network; as shown in Figure 1 multiple genes in this extended network are affected by somatic mutation in AML suggesting a potential role in pathogenesis. Analysis of our WES data from diagnosis samples from a further 96 Australian AML cases identified an additional two somatic mutations in genes from the extended STRING-db v9.05 FANC network. In total we identified 18 mutations in the 16 classified FANC genes and 8 variants in the BLM complex as shown in Figure 2. Two of the germline FANC gene mutations, FANCM-Q13333fs and FANCD2-R926X, are known pathogenic mutations in FA. Patients with mutations in the 8 FANC genes of the core complex form a distinct subset from those with mutations in the other 8 FANC genes. 5 of the 8 patients with mutations in the BLM complex also form a separate group while BLM complex mutations are present in 2 patients that also have FANC mutations. For the two patients with acquired changes the allele frequency for these FANC mutations is greater than 25% suggesting an early origin in disease. Discussion. Our findings suggest that germline and somatic mutations affecting function of the FANC DNA repair pathway may be a recurrent abnormality in AML, potentially contributing to leukaemogenesis. FANC/BLM gene mutations frequently co-exist with mutations in DNMT3A and DNMT1; 46% of the patients with DNMT3A/DNMT1 mutations are also mutant for FANC or BLM complex genes representing significant over-representation (p = 0.021). Within the group of FANC and BLM patients there is also significant under-representation of FLT3-ITD mutations and mutations in N-RAS and K-RAS (p = 0.051), raising the possibility that defects in homologous DNA repair may favour cooperation with alternative signalling pathways. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 64 (5) ◽  
pp. 807-817 ◽  
Author(s):  
Landing Li ◽  
Winnie Tan ◽  
Andrew J. Deans

Abstract The Fanconi anemia (FA) pathway coordinates a faithful repair mechanism for DNA damage that blocks DNA replication, such as interstrand cross-links. A key step in the FA pathway is the conjugation of ubiquitin on to FANCD2 and FANCI, which is facilitated by a large E3 ubiquitin ligase complex called the FA core complex. Mutations in FANCD2, FANCI or FA core complex components cause the FA bone marrow failure syndrome. Despite the importance of these proteins to DNA repair and human disease, our molecular understanding of the FA pathway has been limited due to a deficit in structural studies. With the recent development in cryo-electron microscopy (EM), significant advances have been made in structural characterization of these proteins in the last 6 months. These structures, combined with new biochemical studies, now provide a more detailed understanding of how FANCD2 and FANCI are monoubiquitinated and how DNA repair may occur. In this review, we summarize these recent advances in the structural and molecular understanding of these key components in the FA pathway, compare the activation steps of FANCD2 and FANCI monoubiquitination and suggest molecular steps that are likely to be involved in regulating its activity.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Nuno Maia ◽  
Maria João Nabais Sá ◽  
Cláudia Oliveira ◽  
Flávia Santos ◽  
Célia Azevedo Soares ◽  
...  

We describe an infant female with a syndromic neurodevelopmental clinical phenotype and increased chromosome instability as cellular phenotype. Genotype characterization revealed heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot be explained by any of the heterozygous variants on their own; thus, a synergic contribution is proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA (FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes to the cellular phenotype. The patient’s chromosome instability represents the first report where heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of these findings may have repercussion in the clinical management of other cases with a similar synergic contribution of heterozygous variants, allowing the establishment of new genotype–phenotype correlations and motivating the biochemical study of the underlying mechanisms.


Blood ◽  
2021 ◽  
Author(s):  
Anfeng Mu ◽  
Asuka Hira ◽  
Akira Niwa ◽  
Mitsujiro Osawa ◽  
Kenichi Yoshida ◽  
...  

We have recently discovered Japanese children with a novel Fanconi anemia-like inherited bone marrow failure syndrome. This disorder is likely caused by the loss of a catabolic system directed toward endogenous formaldehyde, due to biallelic variants in ADH5 combined with a heterozygous ALDH2*2 dominant-negative allele (rs671), which is associated with alcohol-induced Asian flushing. PHA-stimulated lymphocytes from these patients displayed highly increased numbers of spontaneous sister chromatid exchanges (SCEs), reflecting homologous recombination repair of formaldehyde damage. Here we report that, by contrast, patient-derived fibroblasts showed normal levels of SCEs, suggesting that different cell types or conditions generate varying amounts of formaldehyde. To obtain insights about endogenous formaldehyde production and how defects in ADH5/ALDH2 affect human hematopoiesis, we constructed disease model cell lines, including iPS cells (iPSC). We found that ADH5 is the primary defense against formaldehyde, and ALDH2 provides a backup. DNA repair capacity in the ADH5/ALDH2-deficient cell lines can be overwhelmed by exogenous low-dose formaldehyde as indicated by higher levels of DNA damage than FANCD2-deficient cells. Although ADH5/ALDH2-deficient cell lines were healthy and showed stable growth, disease model iPSCs displayed drastically defective cell expansion when stimulated into hematopoietic differentiation in vitro, displaying increased levels of DNA damage. The expansion defect was partially reversed by treatment with a new small molecule termed C1, which is an agonist of ALDH2, thus identifying a potential therapeutic strategy for the patients. We propose that hematopoiesis or lymphocyte blastogenesis may entail formaldehyde generation that necessitates elimination by ADH5/ALDH2 enzymes.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1528
Author(s):  
Benilde García-de-Teresa ◽  
Alfredo Rodríguez ◽  
Sara Frias

Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.


2008 ◽  
Vol 29 (1) ◽  
pp. 229-240 ◽  
Author(s):  
Hua He ◽  
Yang Wang ◽  
Xiaolan Guo ◽  
Sonal Ramchandani ◽  
Jin Ma ◽  
...  

ABSTRACT The Protection of telomeres 1 (POT1) protein is a single-stranded telomere binding protein that is essential for proper maintenance of telomere length. Disruption of POT1 function leads to chromosome instability and loss of cellular viability. Here, we show that targeted deletion of the mouse Pot1b gene results in increased apoptosis in highly proliferative tissues. In the setting of telomerase haploinsufficiency, loss of Pot1b results in depletion of germ cells and complete bone marrow failure due to increased apoptosis, culminating in premature death. Pot1b −/ − mTR +/ − hematopoietic progenitor and stem cells display markedly reduced survival potential in vitro. Accelerated telomere shortening, increased G overhang and elevated number of chromosome end-to-end fusions that initiate an ATR-dependent DNA damage response were also observed. These results indicate an essential role for Pot1b in the maintenance of genome integrity and the long-term viability of proliferative tissues in the setting of telomerase deficiency. Interestingly, these phenotypes closely resemble those found in the human disease dyskeratosis congenita (DC), an inherited syndrome characterized by bone marrow failure, hyperpigmentation, and nail dystrophy. We anticipate that this mouse will serve as a useful model to further understand the pathophysiology of DC.


2019 ◽  
Author(s):  
Marcel Hohl ◽  
Aditya Mojumdar ◽  
Sarem Hailemariam ◽  
Vitaly Kuryavyi ◽  
Fiorella Ghisays ◽  
...  

AbstractThe DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene-induced carcinogenesis. The complex is integral to all modes of double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S.cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was defective while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.Author SummaryA complex network of functions is required for suppressing tumorigenesis. These include processes that regulate cell growth and differentiation, processes that repair damage to DNA and thereby prevent cancer promoting mutations and signaling pathways that lead to growth arrest and programmed cell death. The Mre11 complex influences both signaling and DNA repair. To understand its role in tumor suppression, we characterized mutations affecting members of the Mre11 complex that were uncovered through cancer genomic analyses. The data reveal that the signaling functions of the Mre11 complex are important for tumor suppression to a greater degree than its role in DNA repair.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 41-41
Author(s):  
Kyaw Ze Ya Maung ◽  
Paul Leo ◽  
Anna L Brown ◽  
Mahmoud A Bassal ◽  
Debora A. Casolari ◽  
...  

Abstract While there have been extensive studies to define the roles of recurrent somatic mutations in AML, the contribution of germline variants to AML initiation and progression is less well established. DNA repair disorders often predispose patients to developing myeloid malignancies. In particular, biallelic mutations affecting FANC genes cause the recessive heritable bone marrow failure syndrome Fanconi Anemia (FA), which is associated with >800-fold increased risk of progression to AML. A recent explosion of cancer predisposition studies has also revealed the importance of germlineFANC variants in elevated cancer risk (Cancer Treat Rev 2012; 38:89). To investigate the role of FANC gene variants in AML we have performed a case-control study, analyzing rare, deleterious somatic and germline variants for the 19 FANC genes in adult AML and healthy controls cohorts. Whole exome sequencing was performed on diagnosis samples from 131 adult Caucasian AML patients from two major Australian centers, and a cohort of 329 healthy females. We identified rare Tier 1 variants using a minor allele frequency (MAF) < 0.001, as reported in common dbSNP137, 1000 Genome and NHLBI-ESP project databases. Combined Annotation Dependent Depletion algorithm (CADD, Nat Genet 2014; 46: 310) >10 was used to filter for FANC gene variants with high probability of pathogenicity. Sanger sequencing of matched tumour/non-tumour DNA showed the large majority of variants tested to be germline (90%), consistent with previous studies reporting that somatic FANC genes variants are extremely rare in AML (< 1%). Overall, we identified 52 FANC gene variants in 44 cases with 34% of AML cases carrying one or more variant. For independent validation we determined the presence of somatic and germline FANC variants in the TCGA AML cohort using an identical pipeline and filtering analysis. In line with our results, we found that 36% of TCGA AML patients carry at least one germline FANC variant. We investigated known disease-causing (D-C) variants in these two AML cohorts using the FA (FAMutdb) and breast cancer (kConFab and BIC) mutation databases. We found 8 D-C FANC variants in the Australian AML cohort and 5 in the TCGA cohort, with 1 variant present in both cohorts. Moreover, the frequency of D-C variants in our cohort of females with AML (n=51) is 13.7%, while the frequency in the healthy female cohort is 4.5%, comparable to that reported in the ESP database for female European-Americans (2.1%, Hum Mol Genet 2014; 23: 6815). Accordingly, we determined that deleterious FANC germline variants confer a significant increased risk of AML (P=0.018, OR=3.3 for the Australian AML cohort). Finally, we performed mutational burden analysis to investigate enrichment of variants associated with particular FANC genes across the AML cohort. This revealed a significant enrichment of FANCL variants in AML vs healthy controls (P=0.008, Figure 1). FANCL is the enzymatic component of the FA core complex that monoubiquitinates the FANCD2/I heterodimer initiating DNA repair, and its down-regulation has been linked to AML (Oncogene 2016; doi:10.1038). Several FANCL variants, found in our AML cohort, affect the catalytic RING domain and are of particular interest. These include a D-C null variant present in 2 patients, a frame shift variant in 2 patients who presented with AML at a very early age (27 and 46 years old), and a variant affecting a critical conserved residue required for monoubiquitination of FANCD2/I. In conclusion, we show enrichment of rare potentially deleterious FANC gene mutations in AML, associated with a 3-fold increased risk of developing the disease. We hypothesise that, in hematopoietic stem/progenitor cells, these variants confer a subtle defect in interstrand cross-link repair leading to an increased accumulation of mutations and subsequent development of AML. Consistent with this there have been several reports of defective DNA damage repair and increased sensitivity to DNA damaging agents in cells from FANC carriers compared to normal controls (Nat Commun 2014; 5:5496; Mutagenesis 2009; 24:67). Importantly, it is possible to target defects in several DNA repair pathways, and our finding identifies a group of AML patients who may benefit from approaches that target defective FA and homologous recombination pathways. Figure 1. A significant increase mutational burden of FANCL was observed in our AML cohort (line represents P=0.05). Figure 1. A significant increase mutational burden of FANCL was observed in our AML cohort (line represents P=0.05). Disclosures Gill: Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
pp. jmedgenet-2020-107198
Author(s):  
Adela Chirita-Emandi ◽  
Nicoleta Andreescu ◽  
Cristina Popa ◽  
Alexandra Mihailescu ◽  
Anca-Lelia Riza ◽  
...  

Pathogenic variants in BRCA1 gene in heterozygous state are known to be associated with breast-ovarian cancer susceptibility; however, biallelic variants cause a phenotype recognised as Fanconi anaemia complementation group S. Due to its rarity, medical management and preventive screening measures are insufficiently understood. Here, we present nine individuals (one new and eight previously presented) with biallelic variants in BRCA1 gene, to delineate clinical features in comparison with other chromosome instability syndromes and understand the patients’ health risk. Features seen in these 9 individuals (7 females/2 males) include prenatal and postnatal growth failure (9/9), microcephaly (9/9), hypo/hyperpigmented lesions (9/9), facial dysmorphism (9/9), mild developmental delay (8/9) and early-onset solid tumours (5/9). None presented bone marrow failure or immunodeficiency. Individuals with biallelic variants in BRCA1 also showed chromosomal instability by mitomycin and diepoxybutane test. The phenotype caused by biallelic BRCA1 variants is best framed between Fanconi anaemia and Nijmegen syndrome, yet distinct due to lack of bone marrow failure and immunodeficiency. We hypothesise that disease class should be reframed and medical management in people with biallelic variants in BRCA1 should emphasise on detection of solid tumour development and avoiding exposure to ionising radiation.


Sign in / Sign up

Export Citation Format

Share Document