scholarly journals Correction: Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Sarmistha Mahanty ◽  
Shruthi Shirur Dakappa ◽  
Rezwan Shariff ◽  
Saloni Patel ◽  
Mruthyunjaya Mathapathi Swamy ◽  
...  

Following publication of this article, the authors realized there was an error in Figure 2b that needed correction. The TFEB panel of Figure 2b (total lysate) appears to be the same as the TFEB panel of Figure 2e (cytosolic fraction); the TFE3 panels of Figure 2b (total lysate) appear to be the same as the TFE3 panels of Figure 2e (cytosolic fraction) which happened during image assembly. This error did not impact the scientific conclusions of the article.

2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Sarmistha Mahanty ◽  
Shruthi Shirur Dakappa ◽  
Rezwan Shariff ◽  
Saloni Patel ◽  
Mruthyunjaya Mathapathi Swamy ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Yuan ◽  
Defang Li ◽  
Hong Zhao ◽  
Jiangtao Jiang ◽  
Penglong Wang ◽  
...  

Licochalcone A (LCA), a licorice chalconoid, is considered to be a bioactive agent with chemopreventive potential. This study investigated the mechanisms involved in LCA-induced apoptosis in human bladder cancer T24 cells. LCA significantly inhibited cells proliferation, increased reactive oxygen species (ROS) levels, and caused T24 cells apoptosis. Moreover, LCA induced mitochondrial dysfunction, caspase-3 activation, and poly-ADP-ribose polymerase (PARP) cleavage, which displayed features of mitochondria-dependent apoptotic signals. Besides, exposure of T24 cells to LCA triggered endoplasmic reticulum (ER) stress; as indicated by the enhancement in 78 kDa glucose-regulated protein (GRP 78), growth arrest and DNA damage-inducible gene 153/C/EBP homology protein (GADD153/CHOP) expression, ER stress-dependent apoptosis is caused by the activation of ER-specific caspase-12. All the findings from our study suggest that LCA initiates mitochondrial ROS generation and induces oxidative stress that consequently causes T24 cell apoptosis via the mitochondria-dependent and the ER stress-triggered signaling pathways.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masafumi Myoishi ◽  
Testuo Minamino ◽  
Masafumi Kitakaze

Background Endoplasmic reticulum (ER) responds to various stresses by up-regulation of ER chaperones, and prolonged ER stress eventually causes apoptosis. Although apoptosis is considered to be essential for the progression and rupture of atherosclerotic plaques, the influence of ER stress and apoptosis on rupture of unstable coronary plaques remains unclear. Methods and Results We obtained 152 coronary artery segments at autopsy and 40 atherectomy specimens from 71 and 40 patients, respectively . Smooth muscle cells (SMCs) and macrophages in the fibrous caps of thin cap atheroma and ruptured plaques, but not in the fibrous caps of thick cap atheroma and fibrous plaques, showed a marked increase in the expression of ER chaperone and numbers of apoptotic cells. ER chaperones also expressed higher in atherectomy specimens from patients with unstable angina pectoris than with stable angina. To explore the plausible molecular mechanism of activation of ER stress and the mechanistic link to apoptosis, we investigated plaque lipids such as oxysterols. Among oxysterols, expression of 7-ketocholesterol was increased in the fibrous caps of thin cap atheroma compared with thick cap atheroma. Treatment of either cultured coronary artery SMCs or THP-1 cells with 7-ketocholesterol induced upregulation of ER chaperones and apoptosis, while these changes were prevented by antioxidants. We also investigated possible signaling pathways for ER-initiated apoptosis and found that the CHOP (a transcription factor induced by ER stress)-dependent pathway was activated in unstable plaques. In addition, knockdown of CHOP expression by siRNA decreased ER stress-dependent death of cultured coronary artery SMCs and THP-1 cells. Conclusions Increased ER stress occurs in unstable plaques. Our findings suggest that ER stress-induced apoptosis of SMCs and macrophages may contribute to plaque vulnerability.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 338 ◽  
Author(s):  
Entaz Bahar ◽  
Ji-Ye Kim ◽  
Hyonok Yoon

Cancers cells have the ability to develop chemotherapy resistance, which is a persistent problem during cancer treatment. Chemotherapy resistance develops through different molecular mechanisms, which lead to modification of the cancer cells signals needed for cellular proliferation or for stimulating an immune response. The endoplasmic reticulum (ER) is an important organelle involved in protein quality control, by promoting the correct folding of protein and ER-mediated degradation of unfolded or misfolded protein, namely, ER-associated degradation. Disturbances of the normal ER functions causes an accumulation of unfolded or misfolded proteins in the ER lumen, resulting in a condition called “ER stress (ERS).” ERS triggers the unfolded protein response (UPR)—also called the ERS response (ERSR)—to restore homeostasis or activate cell death. Although the ERSR is one emerging potential target for chemotherapeutics to treat cancer, it is also critical for chemotherapeutics resistance, as well. However, the detailed molecular mechanism of the relationship between the ERSR and tumor survival or drug resistance remains to be fully understood. In this review, we aim to describe the most vital molecular mechanism of the relationship between the ERSR and chemotherapy resistance. Moreover, the review also discusses the molecular mechanism of ER stress-mediated apoptosis on cancer treatments.


Author(s):  
Malgorzata Furmanik ◽  
Rick van Gorp ◽  
Meredith Whitehead ◽  
Sadia Ahmad ◽  
Jayanta Bordoloi ◽  
...  

Objective: Vascular calcification is common among aging populations and mediated by vascular smooth muscle cells (VSMCs). The endoplasmic reticulum (ER) is involved in protein folding and ER stress has been implicated in bone mineralization. The role of ER stress in VSMC-mediated calcification is less clear. Approach and Results: mRNA expression of the ER stress markers PERK (PKR (protein kinase RNA)-like ER kinase), ATF (activating transcription factor) 4, ATF6, and Grp78 was detectable in human vessels with levels of PERK decreased in calcified plaques compared to healthy vessels. Protein deposition of Grp78/Grp94 was increased in the matrix of calcified arteries. Induction of ER stress accelerated human primary VSMC-mediated calcification, elevated expression of some osteogenic markers (Runx2, Osterix, ALP, BSP, and OPG), and decreased expression of SMC markers. ER stress potentiated extracellular vesicle (EV) release via SMPD3. EVs from ER stress-treated VSMCs showed increased Grp78 levels and calcification. Electron microscopy confirmed the presence of Grp78/Grp94 in EVs. siRNA knock-down of Grp78 decreased calcification. Warfarin-induced Grp78 and ATF4 expression in rat aortas and VSMCs and increased calcification in an ER stress-dependent manner via increased EV release. Conclusions: ER stress induces vascular calcification by increasing release of Grp78-loaded EVs. Our results reveal a novel mechanism of action of warfarin, involving increased EV release via the PERK-ATF4 pathway, contributing to calcification. This study is the first to show that warfarin induces ER stress and to link ER stress to cargo loading of EVs.


2017 ◽  
Vol 82 ◽  
pp. 123-136 ◽  
Author(s):  
Yinan Jiang ◽  
Xiaoyan Chen ◽  
Mengya Fan ◽  
Hui Li ◽  
Weina Zhu ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Sana Basseri ◽  
Richard C. Austin

The endoplasmic reticulum (ER) plays a crucial role in protein folding, assembly, and secretion. Disruption of ER homeostasis may lead to accumulation of misfolded or unfolded proteins in the ER lumen, a condition referred to as ER stress. In response to ER stress, a signal transduction pathway known as the unfolded protein response (UPR) is activated. UPR activation allows the cell to cope with an increased protein-folding demand on the ER. Recent studies have shown that ER stress/UPR activation plays a critical role in lipid metabolism and homeostasis. ER-stress-dependent dysregulation of lipid metabolism may lead to dyslipidemia, insulin resistance, cardiovascular disease, type 2 diabetes, and obesity. In this paper, we examine recent findings illustrating the important role ER stress/UPR signalling pathways play in regulation of lipid metabolism, and how they may lead to dysregulation of lipid homeostasis.


Sign in / Sign up

Export Citation Format

Share Document