scholarly journals Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoxi Li ◽  
Jian Zheng ◽  
Shi Chen ◽  
Fan-dong Meng ◽  
Jing Ning ◽  
...  

AbstractChemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting anti-tumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. In the present study, we showed that oleandrin treatment triggered breast cancer cell ICD by inducing calreticulin (CRT) exposure on cell surface and the release of high-mobility group protein B1 (HMGB1), heat shock protein 70/90 (HSP70/90), and adenosine triphosphate (ATP). The maturation and activation of dendritic cells (DCs) were increased by co-culturing with the oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. Murine breast cancer cell line EMT6 was engrafted into BALB/c mice, and tumor-bearing mice were administered with oleandrin intraperitoneally every day. Oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Furthermore, the differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress-associated, caspase-independent ICD mainly through PERK/elF2α/ATF4/CHOP pathway. Pharmacological and genetic inhibition of protein kinase R-like ER kinase (PERK) suppressed oleandrin-triggered ICD. Taken together, our findings showed that oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.

2019 ◽  
Author(s):  
Dongqing Zheng ◽  
Jonathan H. Sussman ◽  
Matthew P. Jeon ◽  
Sydney T. Parrish ◽  
Alireza Delfarah ◽  
...  

ABSTRACTOncogenes can generate metabolic vulnerabilities in cancer cells. Here, we tested how AKT and MYC affect the ability of cells to shift between respiration and glycolysis. Using immortalized mammary epithelial cells, we discovered that constitutively active AKT but not MYC induced cell death in galactose culture, where cells must rely on oxidative phosphorylation for energy generation. However, the negative effects of AKT were short-lived, and AKT-expressing cells recommenced growth after ~15 days in galactose. To identify the mechanisms regulating AKT-mediated cell death, we used metabolomics and found that AKT cells dying in galactose upregulated glutathione metabolism. Next, using proteomics, we discovered that AKT-expressing cells dying in galactose upregulated nonsense-mediated mRNA decay, a marker of sensitivity to oxidative stress. We therefore measured levels of reactive oxygen species (ROS) and discovered that galactose induced ROS in cells expressing AKT but not MYC. Additionally, ROS were required for the galactose-induced death of AKT-expressing cells. We then tested whether these findings could be replicated in breast cancer cell lines with constitutively active AKT signaling. Indeed, we found that galactose induced rapid cell death in breast cancer cell lines and that ROS were required for galactose-induced cell death. Together, our results demonstrate that AKT but not MYC induces a metabolic vulnerability in cancer cells, namely the restricted flexibility to use oxidative phosphorylation.ImplicationsThe discovery that AKT but not MYC restricts the ability to utilize oxidative phosphorylation highlights that therapeutics targeting tumor metabolism must be tailored to the individual genetic profile of tumors.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


2020 ◽  
Author(s):  
Xiaoxi Li ◽  
Jian Zheng ◽  
Shi Chen ◽  
Fan-dong Meng ◽  
Jing Ning ◽  
...  

Abstract Background Chemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting antitumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. However, the implications of oleandrin in antitumor immune response and potential ICD induction remain unexplored till now, which is investigated in the present study.Methods Calreticulin (CRT) exposure was detected by immunofluorescence and flow cytometry, and high mobility group protein B1 (HMGB1) and Adenosine Triphosphate (ATP) secretion was quantified by ELISA and both the intracellular and extracellular expression of Heat shock protein 70/90 (HSP70/90) was detected by western blotting in breast cancer cells treated with oleandrin. Dendritic cells (DCs) were co-cultured with oleandrin-treated breast cancer cells before the expressions of activation markers and cytokines were examined by quantitative real time polymerase chain reaction (qRT-PCR), ELISA, and flow cytometry. Immune activation effects of oleandrin were determined in murine breast cancer model using BALB/C mice. The differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by qRT-PCR and Western blotting. Results Oleandrin treatment induced CRT exposure on cell surface and the release of HMGB1, HSP70/90 and ATP. The maturation and activation of DCs were increased by co-culturing with oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. In animal models, oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress associated caspase independent immunogenic cell death (ICD) mainly through PERK/elF2α/ATF4/CHOP pathway. Activation of IRE1 pathway but not ATF6, the other two canonical sensors of ER stress, was also observed. Conclusion Oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.


2019 ◽  
Vol 15 (7) ◽  
pp. 738-742 ◽  
Author(s):  
Adnan Badran ◽  
Atia-tul-Wahab ◽  
Sharmeen Fayyaz ◽  
Elias Baydoun ◽  
Muhammad Iqbal Choudhary

Background:Breast cancer is the most prevalent cancer type in women globally. It is characterized by distinct subtypes depending on different gene expression patterns. Oncogene HER2 is expressed on the surface of cell and is responsible for cell growth regulation. Increase in HER2 receptor protein due to gene amplification, results in aggressive growth, and high metastasis in cancer cells.Methods:The current study evaluates and compares the anti-breast cancer effect of commercially available compounds against HER2 overexpressing BT-474, and triple negative MDA-MB-231 breast cancer cell lines.Results:Preliminary in vitro cell viability assays on these cell lines identified 6 lead molecules active against breast cancer. Convallatoxin (4), a steroidal lactone glycoside, showed the most potent activity with IC50 values of 0.63 ± 0.56, and 0.69 ± 0.59 µM against BT-474 and MDA-MB-231, respectively, whereas 4-[4-(Trifluoromethyl)-phenoxy] phenol (3) a phenol derivative, and Reserpine (5) an indole alkaloid selectively inhibited the growth of BT-474, and MDA-MB-231 breast cancer cells, respectively.Conclusion:These results exhibited the potential of small molecules in the treatment of HER2 amplified and triple negative breast cancers in vitro.


2021 ◽  
Vol 22 (8) ◽  
pp. 4153
Author(s):  
Kutlwano R. Xulu ◽  
Tanya N. Augustine

Thromboembolic complications are a leading cause of morbidity and mortality in cancer patients. Cancer patients often present with an increased risk for thrombosis including hypercoagulation, so the application of antiplatelet strategies to oncology warrants further investigation. This study investigated the effects of anastrozole and antiplatelet therapy (aspirin/clopidogrel cocktail or atopaxar) treatment on the tumour responses of luminal phenotype breast cancer cells and induced hypercoagulation. Ethical clearance was obtained (M150263). Blood was co-cultured with breast cancer cell lines (MCF7 and T47D) pre-treated with anastrozole and/or antiplatelet drugs for 24 h. Hypercoagulation was indicated by thrombin production and platelet activation (morphological and molecular). Gene expression associated with the epithelial-to-mesenchymal transition (EMT) was assessed in breast cancer cells, and secreted cytokines associated with tumour progression were evaluated. Data were analysed with the PAST3 software. Our findings showed that antiplatelet therapies (aspirin/clopidogrel cocktail and atopaxar) combined with anastrozole failed to prevent hypercoagulation and induced evidence of a partial EMT. Differences in tumour responses that modulate tumour aggression were noted between breast cancer cell lines, and this may be an important consideration in the clinical management of subphenotypes of luminal phenotype breast cancer. Further investigation is needed before this treatment modality (combined hormone and antiplatelet therapy) can be considered for managing tumour associated-thromboembolic disorder.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3644-3653
Author(s):  
Hieu T. M. Nguyen ◽  
Nitesh Katta ◽  
Jessica A. Widman ◽  
Eri Takematsu ◽  
Xu Feng ◽  
...  

Laser nanobubbles induce dendritic cell activation in breast cancer cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lisa Svartdal Normann ◽  
Miriam Ragle Aure ◽  
Suvi-Katri Leivonen ◽  
Mads Haugland Haugen ◽  
Vesa Hongisto ◽  
...  

AbstractHER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.


2021 ◽  
Vol 17 ◽  
pp. 174480692110240
Author(s):  
Silvia Gutierrez ◽  
James C Eisenach ◽  
M Danilo Boada

Some types of cancer are commonly associated with intense pain even at the early stages of the disease. The mandible is particularly vulnerable to metastasis from breast cancer, and this process has been studied using a bioluminescent human breast cancer cell line (MDA-MB-231LUC+). Using this cell line and anatomic and neurophysiologic methods in the trigeminal ganglion (TG), we examined the impact of cancer seeding in the mandible on behavioral evidence of hypersensitivity and on trigeminal sensory neurons. Growth of cancer cells seeded to the mandible after arterial injection of the breast cancer cell line in Foxn1 animals (allogeneic model) induced behavioral hypersensitivity to mechanical stimulation of the whisker pad and desensitization of tactile and sensitization of nociceptive mechanically sensitive afferents. These changes were not restricted to the site of metastasis but extended to sensory afferents in all three divisions of the TG, accompanied by widespread overexpression of substance P and CGRP in neurons through the ganglion. Subcutaneous injection of supernatant from the MDA-MB-231LUC+ cell culture in normal animals mimicked some of the changes in mechanically responsive afferents observed with mandibular metastasis. We conclude that released products from these cancer cells in the mandible are critical for the development of cancer-induced pain and that the overall response of the system greatly surpasses these local effects, consistent with the widespread distribution of pain in patients. The mechanisms of neuronal plasticity likely occur in the TG itself and are not restricted to afferents exposed to the metastatic cancer microenvironment.


2021 ◽  
pp. 1-11
Author(s):  
Meng Li ◽  
Wenmin Zhang ◽  
Xiaodan Yang ◽  
Guo An ◽  
Wei Zhao

BACKGROUND: The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS: α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS: α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5–3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS: Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.


Sign in / Sign up

Export Citation Format

Share Document