scholarly journals The effect of extracellular vesicles on the regulation of mitochondria under hypoxia

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yaodan Zhang ◽  
Jin Tan ◽  
Yuyang Miao ◽  
Qiang Zhang

AbstractMitochondria are indispensable organelles for maintaining cell energy metabolism, and also are necessary to retain cell biological function by transmitting information as signal organelles. Hypoxia, one of the important cellular stresses, can directly regulates mitochondrial metabolites and mitochondrial reactive oxygen species (mROS), which affects the nuclear gene expression through mitochondrial retrograde signal pathways, and also promotes the delivery of signal components into cytoplasm, causing cellular injury. In addition, mitochondria can also trigger adaptive mechanisms to maintain mitochondrial function in response to hypoxia. Extracellular vesicles (EVs), as a medium of information transmission between cells, can change the biological effects of receptor cells by the release of cargo, including nucleic acids, proteins, lipids, mitochondria, and their compositions. The secretion of EVs increases in cells under hypoxia, which indirectly changes the mitochondrial function through the uptake of contents by the receptor cells. In this review, we focus on the mitochondrial regulation indirectly through EVs under hypoxia, and the possible mechanisms that EVs cause the changes in mitochondrial function. Finally, we discuss the significance of this EV-mitochondria axis in hypoxic diseases.

2020 ◽  
Vol 375 (1801) ◽  
pp. 20190401 ◽  
Author(s):  
Mike T. Page ◽  
Tania Garcia-Becerra ◽  
Alison G. Smith ◽  
Matthew J. Terry

Chloroplast development requires communication between the progenitor plastids and the nucleus, where most of the genes encoding chloroplast proteins reside. Retrograde signals from the chloroplast to the nucleus control the expression of many of these genes, but the signalling pathway is poorly understood. Tetrapyrroles have been strongly implicated as mediators of this signal with the current hypothesis being that haem produced by the activity of ferrochelatase 1 (FC1) is required to promote nuclear gene expression. We have tested this hypothesis by overexpressing FC1 and specifically targeting it to either chloroplasts or mitochondria, two possible locations for this enzyme. Our results show that targeting of FC1 to chloroplasts results in increased expression of the nuclear-encoded chloroplast genes GUN4 , CA1 , HEMA1 , LHCB2.1, CHLH after treatment with Norflurazon (NF) and that this increase correlates to FC1 gene expression and haem production measured by feedback inhibition of protochlorophyllide synthesis. Targeting FC1 to mitochondria did not enhance the expression of nuclear-encoded chloroplast genes after NF treatment. The overexpression of FC1 also increased nuclear gene expression in the absence of NF treatment, demonstrating that this pathway is operational in the absence of a stress treatment. Our results therefore support the hypothesis that haem synthesis is a promotive chloroplast-to-nucleus retrograde signal. However, not all FC1 overexpression lines enhanced nuclear gene expression, suggesting there is still a lot we do not understand about the role of FC1 in this signalling pathway. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


2020 ◽  
Vol 375 (1801) ◽  
pp. 20190403 ◽  
Author(s):  
Andreas S. Richter ◽  
Takayuki Tohge ◽  
Alisdair R. Fernie ◽  
Bernhard Grimm

In recent years, it has become evident that plants perceive, integrate and communicate abiotic stress signals through chloroplasts. During the process of acclimation plastid-derived, retrograde signals control nuclear gene expression in response to developmental and environmental cues leading to complex genetic and metabolic reprogramming to preserve cellular homeostasis under challenging environmental conditions. Upon stress-induced dysfunction of chloroplasts, GENOMES UNCOUPLED (GUN) proteins participate in the repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES ( PHANG s). Here, we show that the retrograde signal emitted by, or communicated through, GUN-proteins is also essential to induce the accumulation of photoprotective anthocyanin pigments when chloroplast development is attenuated. Comparative whole transcriptome sequencing and genetic analysis reveal GUN1 and GUN5-dependent signals as a source for the regulation of genes involved in anthocyanin biosynthesis. The signal transduction cascade includes well-known transcription factors for the control of anthocyanin biosynthesis, which are deregulated in gun mutants. We propose that regulation of PHANGs and genes contributing to anthocyanin biosynthesis are two, albeit oppositely, co-regulated processes during plastid biogenesis. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


2021 ◽  
Vol 10 (11) ◽  
pp. 6
Author(s):  
Dorota M. Nowak-Malczewska ◽  
Justyna A. Karolak ◽  
Joanna Swierkowska ◽  
Marcelina M. Jaworska ◽  
Karolina I. Kulinska ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel Wittmann ◽  
Neha Sinha ◽  
Bernhard Grimm

AbstractPlastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.


2003 ◽  
Vol 5 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Thomas Pfannschmidt ◽  
Katia Schütze ◽  
Vidal Fey ◽  
Irena Sherameti ◽  
Ralf Oelmüller

2021 ◽  
Vol 49 (4) ◽  
pp. 1779-1790 ◽  
Author(s):  
Lorenzo Ceccarelli ◽  
Chiara Giacomelli ◽  
Laura Marchetti ◽  
Claudia Martini

Extracellular vesicles (EVs) are a heterogeneous family of cell-derived lipid bounded vesicles comprising exosomes and microvesicles. They are potentially produced by all types of cells and are used as a cell-to-cell communication method that allows protein, lipid, and genetic material exchange. Microglia cells produce a large number of EVs both in resting and activated conditions, in the latter case changing their production and related biological effects. Several actions of microglia in the central nervous system are ascribed to EVs, but the molecular mechanisms by which each effect occurs are still largely unknown. Conflicting functions have been ascribed to microglia-derived EVs starting from the neuronal support and ending with the propagation of inflammation and neurodegeneration, confirming the crucial role of these organelles in tuning brain homeostasis. Despite the increasing number of studies reported on microglia-EVs, there is also a lot of fragmentation in the knowledge on the mechanism at the basis of their production and modification of their cargo. In this review, a collection of literature data about the surface and cargo proteins and lipids as well as the miRNA content of EVs produced by microglial cells has been reported. A special highlight was given to the works in which the EV molecular composition is linked to a precise biological function.


1991 ◽  
Vol 11 (2) ◽  
pp. 813-821
Author(s):  
S A Mayer ◽  
C L Dieckmann

Alternative mRNA processing is one mechanism for generating two or more polypeptides from a single gene. While many mammalian genes contain multiple mRNA 3' cleavage and polyadenylation signals that change the coding sequence of the mature mRNA when used at different developmental stages or in different tissues, only one yeast gene has been identified with this capacity. The Saccharomyces cerevisiae nuclear gene CPB1 encodes a mitochondrial protein that is required for cytochrome b mRNA stability. This 66-kDa protein is encoded by a 2.2-kb mRNA transcribed from CPB1. Previously we showed that a second 1.2-kb transcript is initiated at the CBP1 promoter but has a 3' end near the middle of the coding sequence. Furthermore, it was shown that the ratio of the steady-state level of 2.2-kb CBP1 message to 1.2-kb message decreases 10-fold during the induction of mitochondrial function, while the combined levels of both messages remain constant. Having proposed that regulation of 3' end formation dictates the amount of each CBP1 transcript, we now show that a 146-bp fragment from the middle of CBP1 is sufficient to direct carbon source-regulated production of two transcripts when inserted into the yeast URA3 gene. This fragment contains seven polyadenylation sites for the wild-type 1.2-kb mRNA, as mapped by sequence analysis of CBP1 cDNA clones. Deletion mutations upstream of the polyadenylation sites abolished formation of the 1.2-kb transcript, whereas deletion of three of the sites only led to a reduction in abundance of the 1.2-kb mRNA. Our results indicate that regulation of the abundance of both CBP1 transcripts is controlled by elements in a short segment of the gene that directs 3' end formation of the 1.2-kb transcript, a unique case in yeast cells.


Sign in / Sign up

Export Citation Format

Share Document