scholarly journals Swiprosin-1 deficiency in macrophages alleviated atherogenesis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ling-Chang Tong ◽  
Zhi-Bin Wang ◽  
Jia-Qi Zhang ◽  
Yue Wang ◽  
Wei-Ye Liu ◽  
...  

AbstractMacrophages play a vital role in the development of atherosclerosis. Previously, we have found that swiprosin-1 was abundantly expressed in macrophages. Here, we investigated the role of swiprosin-1 expressed in macrophages in atherogenesis. Bone marrow transplantation was performed from swiprosin-1-knockout (Swp−/−) mice and age-matched ApoE−/− mice. Atherosclerotic lesion, serum lipid, and interleukin-β (IL-β) levels were detected. In vitro, the peritoneal macrophages isolated from Swp−/− and wild-type mice were stimulated with oxidized low-density lipoprotein (ox-LDL) and the macrophage of foam degree, cellular lipid content, apoptosis, inflammatory factor, migration, and autophagy were determined. Our results showed that swiprosin-1 was mainly expressed in macrophages of atherosclerotic plaques in aorta from ApoE−/− mice fed with high-cholesterol diet (HCD). The expression of swiprosin-1 in the foaming of RAW264.7 macrophages gradually increased with the increase of the concentration and time stimulated with ox-LDL. Atherosclerotic plaques, accumulation of macrophages, collagen content, serum total cholesterol, LDL, and IL-β levels were decreased in Swp−/− → ApoE−/− mice compared with Swp+/+ → ApoE−/− mice fed with HCD for 16 weeks. The macrophage foam cell formation and cellular cholesterol accumulation were reduced, while the lipid uptake and efflux increased in macrophages isolated from Swp−/− compared to wild-type mice treated with ox-LDL. Swiprosin-1 deficiency in macrophages could inhibit apoptosis, inflammation, migration, and promote autophagy. Taken together, our results demonstrated that swiprosin-1 deficiency in macrophages could alleviate the development and progression of AS. The role of swiprosin-1 may provide a promising new target for ameliorating AS.

Author(s):  
William G. Robichaux ◽  
Fang C. Mei ◽  
Wenli Yang ◽  
Hui Wang ◽  
Hua Sun ◽  
...  

Objective: The cAMP second messenger system, a major stress-response pathway, plays essential roles in normal cardiovascular functions and in pathogenesis of heart diseases. Here, we test the hypothesis that the Epac1 (exchange protein directly activated by cAMP 1) acts as a major downstream effector of cAMP signaling to promote atherogenesis and represents a novel therapeutic target. Approach and Results: To ascertain Epac1’s function in atherosclerosis development, a triple knockout mouse model ( LTe ) was generated by crossing Epac1 −/− mice with atherosclerosis-prone LDb mice lacking both Ldlr and Apobec1 . Deletion of Epac1 led to a significant reduction of atherosclerotic lesion formation as measured by postmortem staining, accompanied by attenuated macrophage/foam cell infiltrations within atherosclerotic plaques as determined by immunofluorescence staining in LTe animals compared with LDb littermates. Primary bone marrow–derived macrophages were isolated from Epac1-null and wild-type mice to investigate the role of Epac1 in lipid uptake and foam cell formation. ox-LDLs (oxidized low-density lipoproteins) stimulation of bone marrow–derived macrophages led to elevated intracellular cAMP and Epac1 levels, whereas an Epac-specific agonist, increased lipid accumulation in wild-type, but not Epac1-null, bone marrow–derived macrophages. Mechanistically, Epac1 acts through PKC (protein kinase C) to upregulate LOX-1 (ox-LDL receptor 1), a major scavenger receptor for ox-LDL uptake, exerting a feedforward mechanism with ox-LDL to increase lipid uptake and propel foam cell formation and atherogenesis. Conclusions: Our study demonstrates a fundamental role of cAMP/Epac1 signaling in vascular remodeling by promoting ox-LDL uptake and foam cell formation during atherosclerosis lesion development. Therefore, Epac1 represents a promising, unexplored therapeutic target for atherosclerosis.


Author(s):  
Parimalanandhini Duraisamy ◽  
Sangeetha Ravi ◽  
Mahalakshmi Krishnan ◽  
Catherene M. Livya ◽  
Beulaja Manikandan ◽  
...  

: Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


2021 ◽  
Vol 22 (5) ◽  
pp. 2529
Author(s):  
Amin Javadifar ◽  
Sahar Rastgoo ◽  
Maciej Banach ◽  
Tannaz Jamialahmadi ◽  
Thomas P. Johnston ◽  
...  

Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.


2021 ◽  
Author(s):  
Emmanuel Opoku ◽  
Cynthia Alicia Traughber ◽  
David Zhang ◽  
Amanda J Iacano ◽  
Mariam Khan ◽  
...  

Nlrp3 inflammasome is activated in advanced human atherosclerotic plaques. Gasdermin D (GsdmD) serves as a final executor of Nlrp3 inflammasome activity, by generating membrane pores for the release of mature Interleukin-1beta (IL-b). Inflammation dampens reverse cholesterol transport (RCT) and promotes atherogenesis, while anti-IL-1b; antibodies were shown to reduce cardiovascular disease in humans. Though Nlrp3/IL-1b; nexus is an emerging atherogenic pathway, the direct role of GsdmD in atherosclerosis is not yet clear. Here, we used in-vivo Nlrp3 inflammasome activation to show that the GsdmD-/- mice release ~80% less IL-1b; vs WT mice. The GsdmD-/- macrophages were more resistant to Nlrp3 inflammasome mediated reduction in cholesterol efflux, showing ~26% decrease vs. ~60% reduction in WT macrophages. GsdmD expression in macrophages exacerbated foam cell formation in an IL-1b; dependent fashion. The GsdmD-/- mice were resistance to Nlrp3 inflammasome mediated defect in RCT, with ~32% reduction in plasma RCT vs. ~ 57% reduction in WT mice, ~ 17% reduction in RCT to liver vs. 42% in WT mice, and ~ 37% decrease in RCT to feces vs. ~ 61% in WT mice. The LDLr anti-sense oligonucleotides (ASO) induced hyperlipidemic mouse model showed role of GsdmD in promoting atherosclerosis. The GsdmD-/- mice exhibit ~42% decreased atherosclerotic lesion area in females and ~33% decreased lesion area in males vs. WT mice. The atherosclerotic plaque-bearing WT mice showed the presence of cleaved N-terminal fragment of GsdmD, indicating cleavage of GsdmD during atherosclerosis. Our data show that GsdmD mediates inflammation-induced defect in RCT and promotes atherosclerosis.


2011 ◽  
Vol 106 (11) ◽  
pp. 763-771 ◽  
Author(s):  
Ine Wolfs ◽  
Marjo Donners ◽  
Menno de Winther

SummaryThe phenotype of macrophages in atherosclerotic lesions can vary dramatically, from a large lipid laden foam cell to a small inflammatory cell. Classically, the concept of macrophage heterogeneity discriminates between two extremes called either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Polarisation of plaque macrophages is predominantly determined by the local micro-environment present in the atherosclerotic lesion and is rather more complex than typically described by the M1/M2 paradigm. In this review we will discuss the role of various polarising factors in regulating the phenotypical state of plaque macrophages. We will focus on two main levels of phenotype regulation, one determined by differentiation factors produced in the lesion and the other determined by T-cell-derived polarising cytokines. With foam cell formation being a key characteristic of macrophages during atherosclerosis initiation and progression, these polarisation factors will also be linked to lipid handling of macrophages.


Author(s):  
Emmanuel Opoku ◽  
Cynthia Alicia Traughber ◽  
David Zhang ◽  
Amanda J. Iacano ◽  
Mariam Khan ◽  
...  

Activation of inflammasomes, such as Nlrp3 and AIM2, can exacerbate atherosclerosis in mice and humans. Gasdermin D (GsdmD) serves as a final executor of inflammasome activity, by generating membrane pores for the release of mature Interleukin-1beta (IL-1β). Inflammation dampens reverse cholesterol transport (RCT) and promotes atherogenesis, while anti-IL-1β antibodies were shown to reduce cardiovascular disease in humans. Though Nlrp3/AIM2 and IL-1β nexus is an emerging atherogenic pathway, the direct role of GsdmD in atherosclerosis is not yet fully clear. Here, we used in vivo Nlrp3 inflammasome activation to show that the GsdmD–/– mice release ∼80% less IL-1β vs. Wild type (WT) mice. The GsdmD–/– macrophages were more resistant to Nlrp3 inflammasome mediated reduction in cholesterol efflux, showing ∼26% decrease vs. ∼60% reduction in WT macrophages. GsdmD expression in macrophages exacerbated foam cell formation in an IL-1β dependent fashion. The GsdmD–/– mice were resistant to Nlrp3 inflammasome mediated defect in RCT, with ∼32% reduction in plasma RCT vs. ∼57% reduction in WT mice, ∼17% reduction in RCT to liver vs. 42% in WT mice, and ∼37% decrease in RCT to feces vs. ∼61% in WT mice. The LDLr antisense oligonucleotides (ASO) induced hyperlipidemic mouse model showed the role of GsdmD in promoting atherosclerosis. The GsdmD–/– mice exhibit ∼42% decreased atherosclerotic lesion area in females and ∼33% decreased lesion area in males vs. WT mice. The atherosclerotic plaque-bearing sections stained positive for the cleaved N-terminal fragment of GsdmD, indicating cleavage of GsdmD in atherosclerotic plaques. Our data show that GsdmD mediates inflammation-induced defects in RCT and promotes atherosclerosis.


2019 ◽  
Vol 317 (6) ◽  
pp. E1055-E1062
Author(s):  
Dandan Huang ◽  
Xiaoxiang Mao ◽  
Jiangtong Peng ◽  
Min Cheng ◽  
Tao Bai ◽  
...  

Zinc-α2-glycoprotein (AZGP1) is a newly identified adipokine that is associated with lipid metabolism and vascular fibrosis. Although adipokines contribute to lipid dysfunction and its related diseases, including stroke and coronary heart disease (CHD), the role of AZGP1 remains unclear. In this study, the role of AZGP1 in atherosclerosis and CHD was investigated. Serum AZGP1 levels from control ( n = 84) and CHD ( n = 91) patients were examined by ELISA and its relationship with various clinical parameters was analyzed. Immunohistochemistry and immunofluorescence were used to detect the expression of AZGP1 and its receptor in coronary atherosclerotic arteries. THP-1 and human embryonic kidney 293 cells were used to verify its anti-inflammatory role in atherosclerosis. Serum AZGP1 levels in CHD patients were lower than controls ( P < 0.01) and independently associated with CHD prevalence ( P = 0.021). AZGP1 levels also inversely correlated with the Gensini score. Immunohistochemistry and immunofluorescence showed that AZGP1 and its receptor β3-adrenoceptor (β3-AR) colocalized in lipid-rich areas of atherosclerotic plaques, particularly around macrophages. In vitro, AZGP1 had no effect on foam cell formation but showed anti-inflammatory effects through its regulation of JNK/AP-1 signaling. In summary, AZGP1 is an anti-inflammatory agent that can be targeted for CHD treatment.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Zierden ◽  
C Millarg ◽  
S Baldus ◽  
S Rosenkranz ◽  
E M Berghausen ◽  
...  

Abstract Introduction and purpose Atherosclerosis is a chronic inflammatory disease of arteries and represents the main underlying cause of death worldwide. Macrophages are major drivers of atherosclerosis by ingestion of lipoproteins, foam cell formation, and secretion of pro-inflammatory mediators. Although macrophages outnumber other leukocytes in atherosclerotic plaques, T and B lymphocytes can shape the course of disease by promoting or mitigating inflammatory responses. Leukocytes highly express the phosphoinositide 3-kinase isoform delta (PI3Kd), exerting a key role in the regulation of immune responses including the activation, proliferation, differentiation, and effector function of lymphocytes. Since macrophages and lymphocytes are all major effectors of atherosclerosis, we aimed to understand the role of PI3Kd in these leukocytes during atherogenesis. Methods and results To investigate the role of haematopoietic PI3Kd in atherosclerosis, bone marrow from PI3Kd−/− or PI3Kd+/+ mice was transplanted into LDLR−/− mice. After 6 weeks of feeding on an atherogenic diet, PI3Kd−/− recipient LDLR−/− mice displayed significantly impaired CD4+ and CD8+ T-cell numbers, CD4+ T-cell activation, CD4+ effector T cells, and proatherogenic CD4+ T helper (Th) 1 responses in para-aortic lymph nodes and spleen compared with PI3Kd+/+ transplanted controls. Surprisingly, the net effect of PI3Kd deficiency was a substantial increase of aortic inflammation and atherosclerosis in LDLR−/− mice. Moreover, haematopoietic PI3Kd deficiency augmented macrophage accumulation in atherosclerotic plaques of LDLR−/− mice, whereas major macrophage functions including foam cell formation, efferocytosis, and cytokine secretion were unaffected by PI3Kd inactivation in these phagocytes. However, haematopoietic PI3Kd deficiency led to depletion of atheroprotective B-1 cells and reduction of proatherogenic B-2 cells in LDLR−/− mice. Moreover, haematopoietic PI3Kd deficiency caused a significant reduction of regulatory CD4+ T cells (Tregs) in plaques, para-aortic lymph nodes, and spleen of LDLR−/− mice. Furthermore, PI3Kd−/− Tregs exhibited reduced secretion of anti-inflammatory cytokines IL-10 and TGF-b as well as impaired suppression of CD4+ T-cell proliferation. Consequently, adoptive transfer of PI3Kd+/+ Tregs fully constrains the atherosclerotic burden in PI3Kd−/− transplanted LDLR−/− mice without affecting B cell numbers. Conclusions We demonstrate that PI3Kd plays a crucial role in B lymphocytes, Th1 cells, and Tregs during atherogenesis. Lack of PI3Kd signalling in atheroprotective Treg responses outplays its impact on proatherogenic Th1 responses, thus leading to aggravated atherosclerosis. Hence, PI3Kd is a key regulator of Treg biology and thereby protects against atherosclerosis progression. Acknowledgement/Funding Center for Molecular Medicine Cologne (CMMC) and the Marga and Walter Boll-Stiftung


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Hong Chen

Background: Epsins are a family of ubiquitin-binding endocytic clathrin adaptors. We recently published that endothelial epsins function as critical regulators of tumor angiogenesis by controlling VEGF signaling (JCI, 2012; ATVB, 2013). Our goal is to define the novel role of epsins in endothelial cells (EC) and macrophages in regulating atherogenesis. Methods and Results: We engineered mice with specific deletion of epsins in EC (EC-DKO) or myeloid cells (MΦ-DKO). Strikingly, either EC-DKO or MΦ-DKO mice on ApoE-/- background fed western diet significantly reduced atherosclerotic lesion formation and foam cell accumulation. FACS analysis revealed that epsin deficiency greatly reduced TNFα and LPS-induced adhesion molecule expression (ICAM-1, VCAM-1, P- and E-selectins, CCR2 and MCP-1) in aortic EC and leukocyte recruitment in aorta. Mechanistically, EC epsins promote TNFR/TLR signaling and NF-κB and MAPK activation by recruiting NEMO, an essential NF-κB activator. In macrophages, epsin deficiency did not alter LDL scavenger receptors, CD36, Lox1 or SRB1, or reverse cholesterol transport proteins, ABCA1 or ABCG1, but did significantly reduce Lucifer Yellow pinocytosis, indicating a major defect in lipid uptake. Oil Red O staining of isolated ApoE-/-/MΦ-DKO macrophages showed little lipid accumulation, suggesting a mechanism in which epsin deficiency impairs foam cell formation. Epsin deficiency also significantly suppressed the pro-inflammatory M1 macrophage phenotype found in plaques thus suggesting an important pro-inflammatory role for epsins in macrophages. Loss of macrophage epsins significantly inhibited TNFα-stimulated activation of NF-κB and MAPK signaling pathways. We also observed a synthetic peptide comprising the epsin ubiquitin-interacting motif (UIM) and lesion homing sequence potently disrupted association of epsins with TNFR/TLR signaling complex in vitro, and inhibited atherosclerotic plaque in vivo. Conclusions: We demonstrate epsins promote atherogenesis by potentiating endothelium activation, leukocyte recruitment, foam cell formation and maintaining pro-inflammatory macrophages within the atherosclerotic plaque, thus suggesting epsins as a novel therapeutic target to combat atherogenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sihai Zhao ◽  
Yafeng Li ◽  
Shoucui Gao ◽  
Xiaojing Wang ◽  
Lijing Sun ◽  
...  

Circulating urotensin II (UII) is involved in the development of atherosclerosis. However, the role of autocrine UII in the development of atherosclerosis remains unclear. Here, we tested the hypothesis that autocrine UII would promote atherosclerosis. Transgenic rabbits were created as a model to study macrophage-specific expressing human UII (hUII) and used to investigate the role of autocrine UII in the development of atherosclerosis. Transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet to induce atherosclerosis. Comparing the transgenic rabbits with their nontransgenic littermates, it was observed that hUII expression increased the macrophage-positive area in the atherosclerotic lesions by 45% and the positive area ratio by 56% in the transgenic rabbits. Autocrine hUII significantly decreased the smooth muscle cell-positive area ratio in transgenic rabbits (by 54%), without affecting the plasma levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose and adipose tissue contents. These results elucidated for the first time that autocrine UII plays an important role in the development of atherosclerosis by increasing the accumulation of macrophage-derived foam cell.


Sign in / Sign up

Export Citation Format

Share Document