scholarly journals miR-23a/b suppress cGAS-mediated innate and autoimmunity

Author(s):  
Qiuya Yu ◽  
Lei Chu ◽  
Yongxing Li ◽  
Quanyi Wang ◽  
Juanjuan Zhu ◽  
...  

AbstractCyclic GMP-AMP synthase (cGAS), a key sensor of intracellular DNA, is essential for eliciting innate immunity against infection, whereas aberrant activation of cGAS by endogenous DNA promotes severe autoimmune diseases. However, it is largely unknown how cGAS expression is regulated during pathogen infection and autoimmunity. Here, we report that during herpes simplex virus type 1 (HSV-1) infection, two microRNAs (miR-23a and miR-23b) whose levels significantly decrease due to their interaction with the lncRNA Oasl2-209 directly regulate the expression of cGAS. Overexpression of miR-23a/b markedly dampens cytosolic DNA-induced innate immune responses, whereas inhibition of miR-23a/b enhances these responses. Mice treated with miR-23a/b agomirs exhibit increased susceptibility to HSV-1 infection. Moreover, cGAS is significantly upregulated in the Trex1−/− mouse autoimmune disease model. Administration of miR-23a/b blunts self DNA-induced autoinflammatory responses in Trex1−/− mice. Collectively, our study not only reveals a novel regulatory mechanism of cGAS expression by miRNAs but also identifies a potential therapy for cGAS-related autoimmune diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Longzhen He ◽  
Baocheng Wang ◽  
Yuanyuan Li ◽  
Leqing Zhu ◽  
Peiling Li ◽  
...  

The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Chu ◽  
Chenhui Li ◽  
Yongxing Li ◽  
Qiuya Yu ◽  
Huansha Yu ◽  
...  

Cyclic GMP-AMP synthase (cGAS), serving as a primary sensor of intracellular DNA, is essential to initiate anti-microbial innate immunity. Inappropriate activation of cGAS by self-DNA promotes severe autoinflammatory diseases such as Aicardi–Goutières syndrome (AGS); thus, inhibition of cGAS may provide therapeutic benefit in anti-autoimmunity. Here we report that perillaldehyde (PAH), a natural monoterpenoid compound derived from Perilla frutescens, suppresses cytosolic-DNA-induced innate immune responses by inhibiting cGAS activity. Mice treated with PAH are more susceptible to herpes simplex virus type 1 (HSV-1) infection. Moreover, administration with PAH markedly ameliorates self-DNA-induced autoinflammatory responses in a mouse model of AGS. Collectively, our study reveals that PAH can effectively inhibit cGAS-STING signaling and could be developed toward the treatment of cGAS-mediated autoimmune diseases.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Amanda L. Verzosa ◽  
Lea A. McGeever ◽  
Shun-Je Bhark ◽  
Tracie Delgado ◽  
Nicole Salazar ◽  
...  

Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP‐AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.


Blood ◽  
2020 ◽  
Author(s):  
Xinyu Yang ◽  
Xiaoye Cheng ◽  
Yiting Tang ◽  
Xianhui Qiu ◽  
Zhongtai Wang ◽  
...  

Bacterial infection not only stimulates innate immune responses but also activates the coagulation cascades. Over-activation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC through amplifying the release of high mobility box group box 1 (HMGB1) into the blood stream. Inhibition of the expression of type 1 IFNs, disruption of their receptor IFN-α/βR or downstream effector (e.g., HMGB1) uniformly decreased Gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the pro-coagulant activity of tissue factor (TF) by promoting the externalization of phosphatidylserine (PS) to the outer cell surface, where PS assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.


2012 ◽  
Vol 210 (1) ◽  
pp. 191-203 ◽  
Author(s):  
Qibin Zhang ◽  
Thomas L. Fillmore ◽  
Athena A. Schepmoes ◽  
Therese R.W. Clauss ◽  
Marina A. Gritsenko ◽  
...  

Using global liquid chromatography-mass spectrometry (LC-MS)–based proteomics analyses, we identified 24 serum proteins that were significantly variant between those with type 1 diabetes (T1D) and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses, and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins, with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects. 16 peptides were verified as having very good discriminating power, with areas under the receiver operating characteristic curve ≥0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetics) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using sera from 50 age-matched type 2 diabetic individuals, and a subset of proteins, C1 inhibitor in particular, were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with T1D from healthy controls and those with type 2 diabetes suggests that dysregulated innate immune responses may be associated with the development of this disorder.


2018 ◽  
Vol 11 (547) ◽  
pp. eaav3302
Author(s):  
Annalisa M. VanHook

An HSV-1 enzyme represses innate immune responses by deamidating the cytosolic DNA sensor cGAS.


Blood ◽  
2011 ◽  
Vol 118 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Alexandros A. Theodoridis ◽  
Christina Eich ◽  
Carl G. Figdor ◽  
Alexander Steinkasserer

Abstract Immune responses require spatial and temporal coordinated interactions between different cell types within distinct microenvironments. This dynamic interplay depends on the competency of the involved cells, predominantly leukocytes, to actively migrate to defined sites of cellular encounters in various tissues. Because of their unique capacity to transport antigen from the periphery to secondary lymphoid tissues for the activation of naive T cells, dendritic cells (DCs) play a key role in the initiation and orchestration of adaptive immune responses. Therefore, pathogen-mediated interference with this process is a very effective way of immune evasion. CYTIP (cytohesin-interacting protein) is a key regulator of DC motility. It has previously been described to control LFA-1 deactivation and to regulate DC adherence. CYTIP expression is up-regulated during DC maturation, enabling their transition from the sessile to the motile state. Here, we demonstrate that on infection of human monocyte-derived DCs with herpes simplex virus type 1 (HSV-1), CYTIP is rapidly degraded and as a consequence β-2 integrins, predominantly LFA-1, are activated. Furthermore, we show that the impairment of migration in HSV-1-infected DCs is in part the result of this increased integrin-mediated adhesion. Thus, we propose a new mechanism of pathogen-interference with central aspects of leukocyte biology.


Sign in / Sign up

Export Citation Format

Share Document