scholarly journals Perillaldehyde Inhibition of cGAS Reduces dsDNA-Induced Interferon Response

2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Chu ◽  
Chenhui Li ◽  
Yongxing Li ◽  
Qiuya Yu ◽  
Huansha Yu ◽  
...  

Cyclic GMP-AMP synthase (cGAS), serving as a primary sensor of intracellular DNA, is essential to initiate anti-microbial innate immunity. Inappropriate activation of cGAS by self-DNA promotes severe autoinflammatory diseases such as Aicardi–Goutières syndrome (AGS); thus, inhibition of cGAS may provide therapeutic benefit in anti-autoimmunity. Here we report that perillaldehyde (PAH), a natural monoterpenoid compound derived from Perilla frutescens, suppresses cytosolic-DNA-induced innate immune responses by inhibiting cGAS activity. Mice treated with PAH are more susceptible to herpes simplex virus type 1 (HSV-1) infection. Moreover, administration with PAH markedly ameliorates self-DNA-induced autoinflammatory responses in a mouse model of AGS. Collectively, our study reveals that PAH can effectively inhibit cGAS-STING signaling and could be developed toward the treatment of cGAS-mediated autoimmune diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Longzhen He ◽  
Baocheng Wang ◽  
Yuanyuan Li ◽  
Leqing Zhu ◽  
Peiling Li ◽  
...  

The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.


Author(s):  
Qiuya Yu ◽  
Lei Chu ◽  
Yongxing Li ◽  
Quanyi Wang ◽  
Juanjuan Zhu ◽  
...  

AbstractCyclic GMP-AMP synthase (cGAS), a key sensor of intracellular DNA, is essential for eliciting innate immunity against infection, whereas aberrant activation of cGAS by endogenous DNA promotes severe autoimmune diseases. However, it is largely unknown how cGAS expression is regulated during pathogen infection and autoimmunity. Here, we report that during herpes simplex virus type 1 (HSV-1) infection, two microRNAs (miR-23a and miR-23b) whose levels significantly decrease due to their interaction with the lncRNA Oasl2-209 directly regulate the expression of cGAS. Overexpression of miR-23a/b markedly dampens cytosolic DNA-induced innate immune responses, whereas inhibition of miR-23a/b enhances these responses. Mice treated with miR-23a/b agomirs exhibit increased susceptibility to HSV-1 infection. Moreover, cGAS is significantly upregulated in the Trex1−/− mouse autoimmune disease model. Administration of miR-23a/b blunts self DNA-induced autoinflammatory responses in Trex1−/− mice. Collectively, our study not only reveals a novel regulatory mechanism of cGAS expression by miRNAs but also identifies a potential therapy for cGAS-related autoimmune diseases.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Jenny E. Suarez-Ramirez ◽  
Margarite L. Tarrio ◽  
Kwangsin Kim ◽  
Delia A. Demers ◽  
Christine A. Biron

ABSTRACT The cytokine gamma interferon (IFN-γ), with antimicrobial and immunoregulatory functions, can be produced by T cells following stimulation through their T cell receptors (TCRs) for antigen. The innate cytokines type 1 IFNs and interleukin-12 (IL-12) can also stimulate IFN-γ production by natural killer (NK) but not naive T cells. High basal expression of signal transducer and activator of transcription 4 (STAT4), used by type 1 IFN and IL-12 to induce IFN-γ as well as CD25, contributes to the NK cell responses. During acute viral infections, antigen-specific CD8 T cells are stimulated to express elevated STAT4 and respond to the innate factors with IFN-γ production. Little is known about the requirements for cytokine compared to TCR stimulation. Primary infections of mice with lymphocytic choriomeningitis virus (LCMV) demonstrated that although the elicited antigen-specific CD8 T cells acquired STAT4-dependent innate cytokine responsiveness for IFN-γ and CD25 induction ex vivo, TCR stimulation induced these through STAT4-independent pathways. During secondary infections, LCMV-immune CD8 T cells had STAT4-dependent IFN-γ expression at times of innate cytokine induction but subsequently expanded through STAT4-independent pathways. At times of innate cytokine responses during infection with the antigen-distinct murine cytomegalovirus virus (MCMV), NK and LCMV-immune CD8 T cells both had activation of pSTAT4 and IFN-γ. The T cell IFN-γ response was STAT4 and IL-12 dependent, but antigen-dependent expansion was absent. By dissecting requirements for STAT4 and antigen, this work provides novel insights into the endogenous regulation of cytokine and proliferative responses and demonstrates conditioning of innate immunity by experience. IMPORTANCE Understanding the regulation and function of adaptive immunity is key to the development of new and improved vaccines. Its CD8 T cells are activated through antigen-specific receptors to contribute to long-lasting immunity after natural infections or purposeful immunization. The antigen-receptor pathway of stimulation can lead to production of gamma interferon (IFN-γ), a cytokine having both direct antimicrobial and immunoregulatory functions. Natural killer cells can also produce IFN-γ in response to the innate cytokines type 1 IFNs and/or interleukin-12. This work demonstrates that CD8 T cells acquire parallel responsiveness to innate cytokine signaling for IFN-γ expression during their selection and development and maintain this capability to participate in innate immune responses as long-lived memory cells. Thus, CD8 T cells are conditioned to play a role in innate immunity, and their presence under immune conditions has the potential to regulate resistance to either secondary challenges or primary infections with unrelated agents.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1200
Author(s):  
Ifeanyi Kingsley Uche ◽  
Konstantin G. Kousoulas ◽  
Paul J. F. Rider

The development of cancer causes disruption of anti-tumor immunity required for surveillance and elimination of tumor cells. Immunotherapeutic strategies aim for the restoration or establishment of these anti-tumor immune responses. Cancer immunotherapies include immune checkpoint inhibitors (ICIs), adoptive cellular therapy (ACT), cancer vaccines, and oncolytic virotherapy (OVT). The clinical success of some of these immunotherapeutic modalities, including herpes simplex virus type-1 derived OVT, resulted in Food and Drug Administration (FDA) approval for use in treatment of human cancers. However, a significant proportion of patients do not respond or benefit equally from these immunotherapies. The creation of an immunosuppressive tumor microenvironment (TME) represents an important barrier preventing success of many immunotherapeutic approaches. Mechanisms of immunosuppression in the TME are a major area of current research. In this review, we discuss how oncolytic HSV affects the tumor microenvironment to promote anti-tumor immune responses. Where possible we focus on oncolytic HSV strains for which clinical data is available, and discuss how these viruses alter the vasculature, extracellular matrix and immune responses in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document