scholarly journals Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Guo-Tian Liu ◽  
Bian-Bian Wang ◽  
David Lecourieux ◽  
Mei-Jie Li ◽  
Ming-Bo Liu ◽  
...  

AbstractWild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii “LiuBa-8” (LB) and susceptible V. vinifera “Pinot Noir” (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.

Author(s):  
Nuray Özer ◽  
Halil İbrahim Uzun ◽  
Burak Aktürk ◽  
Cengiz Özer ◽  
Murat Akkurt ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ze Peng ◽  
Yanhong He ◽  
Saroj Parajuli ◽  
Qian You ◽  
Weining Wang ◽  
...  

AbstractDowny mildew (DM), caused by obligate parasitic oomycetes, is a destructive disease for a wide range of crops worldwide. Recent outbreaks of impatiens downy mildew (IDM) in many countries have caused huge economic losses. A system to reveal plant–pathogen interactions in the early stage of infection and quickly assess resistance/susceptibility of plants to DM is desired. In this study, we established an early and rapid system to achieve these goals using impatiens as a model. Thirty-two cultivars of Impatiens walleriana and I. hawkeri were evaluated for their responses to IDM at cotyledon, first/second pair of true leaf, and mature plant stages. All I. walleriana cultivars were highly susceptible to IDM. While all I. hawkeri cultivars were resistant to IDM starting at the first true leaf stage, many (14/16) were susceptible to IDM at the cotyledon stage. Two cultivars showed resistance even at the cotyledon stage. Histological characterization showed that the resistance mechanism of the I. hawkeri cultivars resembles that in grapevine and type II resistance in sunflower. By integrating full-length transcriptome sequencing (Iso-Seq) and RNA-Seq, we constructed the first reference transcriptome for Impatiens comprised of 48,758 sequences with an N50 length of 2060 bp. Comparative transcriptome and qRT-PCR analyses revealed strong candidate genes for IDM resistance, including three resistance genes orthologous to the sunflower gene RGC203, a potential candidate associated with DM resistance. Our approach of integrating early disease-resistance phenotyping, histological characterization, and transcriptome analysis lay a solid foundation to improve DM resistance in impatiens and may provide a model for other crops.


2017 ◽  
Vol 40 (11) ◽  
pp. 2790-2805 ◽  
Author(s):  
Antonella Castagna ◽  
Kristóf Csepregi ◽  
Susanne Neugart ◽  
Gaetano Zipoli ◽  
Kristýna Večeřová ◽  
...  

2008 ◽  
Vol 37 (5) ◽  
pp. 498 ◽  
Author(s):  
S. Deepak ◽  
G. Manjunath ◽  
S. Manjula ◽  
S. Niranjan-Raj ◽  
N. P. Geetha ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Demetrio Marcianò ◽  
Valentina Ricciardi ◽  
Elena Marone Fassolo ◽  
Alessandro Passera ◽  
Piero Attilio Bianco ◽  
...  

Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.


Author(s):  
Samir Medjekal ◽  
Mouloud Ghadbane

Sheep have a gastrointestinal tract similar to that of other ruminants. Their stomach is made up of four digestive organs: the rumen, the reticulum, the omasum and the abomasum. The rumen plays a role in storing ingested foods, which are fermented by a complex anaerobic rumen microbiota population with different types of interactions, positive or negative, that can occur between their microbial populations. Sheep feeding is largely based on the use of natural or cultivated fodder, which is exploited in green by grazing during the growth period of the grass and in the form of fodder preserved during the winter period. Ruminant foods are essentially of plant origin, and their constituents belong to two types of structures: intracellular constituents and cell wall components. Cellular carbohydrates play a role of metabolites or energy reserves; soluble carbohydrates account for less than 10% dry matter (DM) of foods. The plant cell wall is multi-layered and consists of primary wall and secondary wall. Fundamentally, the walls are deposited at an early stage of growth. A central blade forms the common boundary layer between two adjacent cells and occupies the location of the cell plate. Most of the plant cell walls consist of polysaccharides (cellulose, hemicellulose and pectic substances) and lignin, these constituents being highly polymerized, as well as proteins and tannins.


Sign in / Sign up

Export Citation Format

Share Document