scholarly journals A long-range cis-regulatory element for class I odorant receptor genes

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Tetsuo Iwata ◽  
Yoshihito Niimura ◽  
Chizuru Kobayashi ◽  
Daichi Shirakawa ◽  
Hikoyu Suzuki ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tetsuo Iwata ◽  
Satoshi Tomeoka ◽  
Junji Hirota

AbstractIn the mouse, 129 functional class I odorant receptor (OR) genes reside in a ~ 3 megabase huge gene cluster on chromosome 7. The J element, a long-range cis-regulatory element governs the singular expression of class I OR genes by exerting its effect over the whole cluster. To elucidate the molecular mechanisms underlying class I-specific enhancer activity of the J element, we analyzed the J element sequence to determine the functional region and essential motif. The 430-bp core J element, that is highly conserved in mammalian species from the platypus to humans, contains a class I-specific conserved motif of AAACTTTTC, multiple homeodomain sites, and a neighboring O/E-like site, as in class II OR-enhancers. A series of transgenic reporter assays demonstrated that the class I-specific motif is not essential, but the 330-bp core J-H/O containing the homeodomain and O/E-like sites is necessary and sufficient for class I-specific enhancer activity. Further motif analysis revealed that one of homeodomain sequence is the Greek Islands composite motif of the adjacent homeodomain and O/E-like sequences, and mutations in the composite motif abolished or severely reduced class I-enhancer activity. Our results demonstrate that class I and class II enhancers share a functional motif for their enhancer activity.


1992 ◽  
Vol 12 (7) ◽  
pp. 3078-3086
Author(s):  
J E Maguire ◽  
W I Frels ◽  
J C Richardson ◽  
J D Weissman ◽  
D S Singer

Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression.


2020 ◽  
Vol 117 (26) ◽  
pp. 15354-15362 ◽  
Author(s):  
Ricarda Höhner ◽  
Mathias Pribil ◽  
Miroslava Herbstová ◽  
Laura Susanna Lopez ◽  
Hans-Henning Kunz ◽  
...  

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


2015 ◽  
Vol 35 (22) ◽  
pp. 3880-3891 ◽  
Author(s):  
Parul Mehra ◽  
Andrew D. Wells

Interleukin-2 (IL-2) is a potent cytokine with roles in both immunity and tolerance. Genetic studies in humans and mice demonstrate a role forIl2in autoimmune disease susceptibility, and for decades the proximalIl2upstream regulatory region has served as a paradigm of tissue-specific, inducible gene regulation. In this study, we have identified a novel long-range enhancer of theIl2gene located 83 kb upstream of the transcription start site. This element can potently enhanceIl2transcription in recombinant reporter assaysin vitro, and the native region undergoes chromatin remodeling, transcribes a bidirectional enhancer RNA, and loops to physically interact with theIl2genein vivoin a CD28-dependent manner in CD4+T cells. Thiscisregulatory element is evolutionarily conserved and is situated near a human single-nucleotide polymorphism (SNP) associated with multiple autoimmune disorders. These results indicate that the regulatory architecture of theIl2locus is more complex than previously appreciated and suggest a novel molecular basis for the genetic association ofIl2polymorphism with autoimmune disease.


ChemInform ◽  
2003 ◽  
Vol 34 (32) ◽  
Author(s):  
JoAnne Stubbe ◽  
Daniel G. Nocera ◽  
Cyril S. Yee ◽  
Michelle C. Y. Chang

2006 ◽  
Vol 17 (1) ◽  
pp. 82-87 ◽  
Author(s):  
J. T. Forton ◽  
I. A. Udalova ◽  
S. Campino ◽  
K. A. Rockett ◽  
J. Hull ◽  
...  

1989 ◽  
Vol 169 (4) ◽  
pp. 1309-1321 ◽  
Author(s):  
P A Burke ◽  
S Hirschfeld ◽  
Y Shirayoshi ◽  
J W Kasik ◽  
K Hamada ◽  
...  

Expression of MHC class I genes varies according to developmental stage and type of tissues. To study the basis of class I gene regulation in tissues in vivo, we examined binding of nuclear proteins to the conserved cis sequence of the murine H-2 gene, class I regulatory element (CRE), which contains two independent factor-binding sites, region I and region II. In gel mobility shift analyses we found that extracts from adult tissues that express class I genes, such as spleen and liver, had binding activity to region I. In contrast, extracts from brain, which does not express class I genes, did not show region I binding activity. In addition, fetal tissues that express class I gene at very low levels, also did not reveal region I binding activity. Binding activity to region I became detectable during the neonatal period when class I gene expression sharply increases. Most of these tissues showed binding activity to region II, irrespective of class I gene expression. Although region II contained a sequence similar to the AP-1 recognition site, AP-1 was not responsible for the region II binding activity detected in this work. These results illustrate a correlation between region I binding activity and developmental and tissue-specific expression of MHC class I genes. The CRE exerts an enhancer-like activity in cultured fibroblasts. We evaluated the significance of each factor binding to CRE. Single 2-bp mutations were introduced into the CRE by site-directed mutagenesis and the ability of each mutant to elicit the enhancer activity was tested in transient CAT assays. A mutation that eliminated region I protein binding greatly impaired enhancer activity. A mutation that eliminated region II binding also caused a lesser but measurable effect. We conclude that region I and region II are both capable of enhancing transcription of the class I gene. These results indicate that in vivo regulation of MHC class I gene expression is mediated by binding of trans-acting factors to the CRE.


Sign in / Sign up

Export Citation Format

Share Document