scholarly journals Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tirthankar Mohanty ◽  
Jane Fisher ◽  
Anahita Bakochi ◽  
Ariane Neumann ◽  
José Francisco Pereira Cardoso ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1477 ◽  
Author(s):  
Aneta Manda-Handzlik ◽  
Urszula Demkow

Under normal conditions, neutrophils are restricted from trafficking into the brain parenchyma and cerebrospinal fluid by the presence of the brain–blood barrier (BBB). Yet, infiltration of the central nervous system (CNS) by neutrophils is a well-known phenomenon in the course of different pathological conditions, e.g., infection, trauma or neurodegeneration. Different studies have shown that neutrophil products, i.e., free oxygen radicals and proteolytic enzymes, play an important role in the pathogenesis of BBB damage. It was recently observed that accumulating granulocytes may release neutrophil extracellular traps (NETs), which damage the BBB and directly injure surrounding neurons. In this review, we discuss the emerging role of NETs in various pathological conditions affecting the CNS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyan Wu ◽  
Hanhai Zeng ◽  
Lingxin Cai ◽  
Gao Chen

It has been reported that several immune cells can release chromatin and granular proteins into extracellular space in response to the stimulation, forming extracellular traps (ETs). The cells involved in the extracellular trap formation are recognized including neutropils, macrophages, basophils, eosinophils, and mast cells. With the development of research related to central nervous system, the role of ETs has been valued in neuroinflammation, blood–brain barrier, and other fields. Meanwhile, it has been found that microglial cells as the resident immune cells of the central nervous system can also release ETs, updating the original understanding. This review aims to clarify the role of the ETs in the central nervous system, especially in neuroinflammation and blood–brain barrier.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yinghan Guo ◽  
Hanhai Zeng ◽  
Chen Gao

Neutrophil extracellular traps (NETs) are complexes of decondensed DNA fibers and antimicrobial peptides that are released by neutrophils and play important roles in many noninfectious diseases, such as cystic fibrosis, systemic lupus erythematosus, diabetes, and cancer. Recently, the formation of NETs has been detected in many central nervous system diseases and is thought to play different roles in the occurrence and development of these diseases. Researchers have detected NETs in acute ischemic stroke thrombi, and these NETs are thought to promote coagulation and thrombosis. NETs in ischemic brain parenchyma were identified as the cause of secondary nerve damage. High levels of NETs were also detected in grade IV glioma tissues, where NETs were involved in the proliferation and invasion of glioma cells by activating a signaling pathway. Extracellular web-like structures have also recently been observed in mice with traumatic brain injury (TBI), and it was hypothesized that NETs contribute to the development of edema after TBI. This article reviews the effect of NETs on multiple diseases that affect the CNS and explores their clinical application prospects.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document