scholarly journals Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Richard W. Meek ◽  
Ian T. Cadby ◽  
Patrick J. Moynihan ◽  
Andrew L. Lovering

Abstract The bacterial second messenger cyclic-di-GMP is a widespread, prominent effector of lifestyle change. An example of this occurs in the predatory bacterium Bdellovibrio bacteriovorus, which cycles between free-living and intraperiplasmic phases after entering (and killing) another bacterium. The initiation of prey invasion is governed by DgcB (GGDEF enzyme) that produces cyclic-di-GMP in response to an unknown stimulus. Here, we report the structure of DgcB, and demonstrate that the GGDEF and sensory forkhead-associated (FHA) domains form an asymmetric dimer. Our structures indicate that the FHA domain is a consensus phosphopeptide sensor, and that the ligand for activation is surprisingly derived from the N-terminal region of DgcB itself. We confirm this hypothesis by determining the structure of a FHA:phosphopeptide complex, from which we design a constitutively-active mutant (confirmed via enzyme assays). Our results provide an understanding of the stimulus driving DgcB-mediated prey invasion and detail a unique mechanism of GGDEF enzyme regulation.

Author(s):  
Gaoge Xu ◽  
Lichuan Zhou ◽  
Guoliang Qian ◽  
Fengquan Liu

Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. The large number of c-di-GMP-related diguanylate cyclases (DGCs), phosphodiesterases (PDEs) and effectors are responsible for the complexity and dynamics of c-di-GMP signaling. Some of these components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. Synthesis of the antibiotic HSAF ( H eat S table A ntifungal F actor) in Lysobacter enzymogenes is regulated by a specific c-di-GMP signaling pathway that includes a PDE LchP and a c-di-GMP effector Clp (also a transcriptional regulator). In the present study, from among 19 DGCs, we identified a diguanylate cyclase, LchD, which participates in this pathway. Subsequent investigation indicates that LchD and LchP physically interact and that the catalytic center of LchD is required for both the formation of the LchD-LchP complex and HSAF production. All the detected phenotypes support that LchD and LchP dispaly local c-di-GMP signaling to regulate HSAF biosynthesis. Although direct evidence is lacking, our investigation, which shows that the interaction between a DGC and a PDE maintains the specificity of c-di-GMP signaling, suggests the possibility of the existence of local c-di-GMP pools in bacteria. Importance Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. Signaling of c-di-GMP is complex and dynamic, and it is mediated by a large number of components, including c-di-GMP synthases (diguanylate cyclases. DGCs), c-di-GMP degrading enzymes (phosphodiesterases, PDEs), and c-di-GMP effectors. These components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. In the present study, we identified a DGC that interacted with a PDE to specifically regulate antibiotic biosynthesis in L. enzymogenes . We provide direct evidence to show that the DGC and PDE form a complex, and also indirect evidence to argue that they may balance a local c-di-GMP pool to control the antibiotic production. The results represent an important finding regarding the mechanism of a pair of DGC and PDE to control the expression of specific c-di-GMP signaling pathways.


2016 ◽  
Vol 199 (5) ◽  
Author(s):  
Ute Römling ◽  
Zhao-Xun Liang ◽  
J. Maxwell Dow

ABSTRACT Cyclic di-GMP was the first cyclic dinucleotide second messenger described, presaging the discovery of additional cyclic dinucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, and they include both enzymatically active and inactive members, with a subset involved in synthesis and degradation of other cyclic dinucleotides. Here, we summarize current knowledge of sequence and structural variations that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL, and HD-GYP domain proteins.


Microbiology ◽  
2021 ◽  
Vol 167 (4) ◽  
Author(s):  
Andrew L. Lovering ◽  
R. Elizabeth Sockett

Bdellovibrio bacteriovorus is an environmentally-ubiquitous bacterium that uses unique adaptations to kill other bacteria. The best-characterized strain, HD100, has a multistage lifestyle, with both a free-living attack phase and an intraperiplasmic growth and division phase inside the prey cell. Advances in understanding the basic biology and regulation of predation processes are paving the way for future potential therapeutic and bioremediation applications of this unusual bacterium.


2020 ◽  
Author(s):  
Laura Barrientos-Moreno ◽  
María Antonia Molina-Henares ◽  
María Isabel Ramos-González ◽  
Manuel Espinosa-Urgel

<p>The intracellular second messenger cyclic diguanylate (c-di-GMP) is broadly conserved in bacteria, where it influences processes such as virulence, stress resistance and biofilm development. In the plant-beneficial bacterium <em>Pseudomonas putida</em> KT2440, the response regulator with diguanylate cyclase activity CfcR is the main contributor to c-di-GMP levels in the stationary phase of growth. When overexpressed, CfcR increases c-di-GMP levels and gives rise to a pleiotropic phenotype that includes enhanced biofilm formation and crinkly colony morphology. Our group has previously reported that insertion mutants in <em>argG</em> and <em>argH</em>, the genes that encode the last two enzymes in the arginine biosynthesis pathway, do not display the crinkly colony morphology phenotype and show decreased c-di-GMP levels even in the presence of <em>cfcR</em> in multicopy (Ramos-González, M.I. <em>et al.</em> 2016. Front. Microbiol. 7, 1093). Here we present results indicating that L-arginine acts both as an environmental and as a metabolic signal that influences the lifestyles of <em>P. putida</em> through the modulation of c-di-GMP levels and changes in the expression of structural elements of biofilms. Exogenous L-arginine partially restores c-di-GMP levels in arginine biosynthesis mutants, a response that is transduced through CfcR and possibly (an)other diguanylate cyclase(s). At least three periplasmic binding proteins, each forming part of an amino acid transport system, contribute in different ways to the response to external L-arginine. We propose that the turnover of the second messenger c-di-GMP is modulated by the state of global arginine pools in the cell resulting both from anabolism and from uptake.</p>


2005 ◽  
Vol 61 (a1) ◽  
pp. c235-c235
Author(s):  
C. Chan ◽  
R. Paul ◽  
D. Samoray ◽  
N. Amiot ◽  
B. Giese ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nathan Feirer ◽  
Jing Xu ◽  
Kylie D. Allen ◽  
Benjamin J. Koestler ◽  
Eric L. Bruger ◽  
...  

ABSTRACTThe motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogenAgrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP inA. tumefaciensare controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins.IMPORTANCEPathogenic bacteria often attach to surfaces and form multicellular communities called biofilms. Biofilms are inherently resilient and can be difficult to treat, resisting common antimicrobials. Understanding how bacterial cells transition to the biofilm lifestyle is essential in developing new therapeutic strategies. We have characterized a novel signaling pathway that plays a dominant role in the regulation of biofilm formation in the model pathogenAgrobacterium tumefaciens. This control pathway involves small metabolites called pterins, well studied in eukaryotes, but this is the first example of pterin-dependent signaling in bacteria. The described pathway controls levels of an important intracellular second messenger (cyclic diguanylate monophosphate) that regulates key bacterial processes such as biofilm formation, motility, and virulence. Pterins control the balance of activity for an enzyme that both synthesizes and degrades the second messenger. These findings reveal a complex, multistep pathway that modulates this enzyme, possibly identifying new targets for antibacterial intervention.


2005 ◽  
Vol 83 (6) ◽  
pp. 721-727 ◽  
Author(s):  
R Scott Williams ◽  
Nina Bernstein ◽  
Megan S Lee ◽  
Melissa L Rakovszky ◽  
Diana Cui ◽  
...  

The response of eukaryotic cells to DNA damage requires a multitude of protein–protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.Key words: BRCA1, BRCT, PNK, FHA, polynucleotide kinase, breast cancer, phosphopeptide-protein interactions, DNA damage response.


2004 ◽  
Vol 101 (49) ◽  
pp. 17084-17089 ◽  
Author(s):  
C. Chan ◽  
R. Paul ◽  
D. Samoray ◽  
N. C. Amiot ◽  
B. Giese ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Henrik Almblad ◽  
Trevor E. Randall ◽  
Fanny Liu ◽  
Katherine Leblanc ◽  
Ryan A. Groves ◽  
...  

AbstractMany bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


2020 ◽  
Vol 401 (12) ◽  
pp. 1335-1348
Author(s):  
Elizaveta Krol ◽  
Simon Schäper ◽  
Anke Becker

AbstractCyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger which has been associated with a motile to sessile lifestyle switch in many bacteria. Here, we review recent insights into c-di-GMP regulated processes related to environmental adaptations in alphaproteobacterial rhizobia, which are diazotrophic bacteria capable of fixing nitrogen in symbiosis with their leguminous host plants. The review centers on Sinorhizobium meliloti, which in the recent years was intensively studied for its c-di-GMP regulatory network.


Sign in / Sign up

Export Citation Format

Share Document