Diguanylate cyclase and phosphodiesterase interact to maintain the specificity of c-di-GMP signaling in the regulation of antibiotic synthesis in Lysobacter enzymogenes

Author(s):  
Gaoge Xu ◽  
Lichuan Zhou ◽  
Guoliang Qian ◽  
Fengquan Liu

Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. The large number of c-di-GMP-related diguanylate cyclases (DGCs), phosphodiesterases (PDEs) and effectors are responsible for the complexity and dynamics of c-di-GMP signaling. Some of these components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. Synthesis of the antibiotic HSAF ( H eat S table A ntifungal F actor) in Lysobacter enzymogenes is regulated by a specific c-di-GMP signaling pathway that includes a PDE LchP and a c-di-GMP effector Clp (also a transcriptional regulator). In the present study, from among 19 DGCs, we identified a diguanylate cyclase, LchD, which participates in this pathway. Subsequent investigation indicates that LchD and LchP physically interact and that the catalytic center of LchD is required for both the formation of the LchD-LchP complex and HSAF production. All the detected phenotypes support that LchD and LchP dispaly local c-di-GMP signaling to regulate HSAF biosynthesis. Although direct evidence is lacking, our investigation, which shows that the interaction between a DGC and a PDE maintains the specificity of c-di-GMP signaling, suggests the possibility of the existence of local c-di-GMP pools in bacteria. Importance Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. Signaling of c-di-GMP is complex and dynamic, and it is mediated by a large number of components, including c-di-GMP synthases (diguanylate cyclases. DGCs), c-di-GMP degrading enzymes (phosphodiesterases, PDEs), and c-di-GMP effectors. These components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. In the present study, we identified a DGC that interacted with a PDE to specifically regulate antibiotic biosynthesis in L. enzymogenes . We provide direct evidence to show that the DGC and PDE form a complex, and also indirect evidence to argue that they may balance a local c-di-GMP pool to control the antibiotic production. The results represent an important finding regarding the mechanism of a pair of DGC and PDE to control the expression of specific c-di-GMP signaling pathways.

2020 ◽  
Author(s):  
Julian Haist ◽  
Sara Alina Neumann ◽  
Mahmoud M Al-Bassam ◽  
Sandra Lindenberg ◽  
Marie A Elliot ◽  
...  

AbstractLevels of the second messenger bis-3’-5’-cyclic di-guanosinemonophosphate (c-di-GMP) determine when Streptomyces initiate sporulation to survive under adverse conditions. c-di-GMP signals are integrated into the genetic differentiation network by the regulator BldD and the sigma factor σWhiG. However, functions of the development-specific c-di-GMP diguanylate cyclases (DGCs) CdgB and CdgC, and the phosphodiesterases (PDEs) RmdA and RmdB, are poorly understood. Here, we provide biochemical evidence that the GGDEF-EAL domain protein RmdB from S. venezuelae is a monofunctional PDE that hydrolyzes c-di-GMP to 5’pGpG. Despite having an equivalent GGDEF-EAL domain arrangement, RmdA cleaves c-di-GMP to GMP and exhibits residual DGC activity. We show that an intact EAL motif is crucial for the in vivo function of both enzymes since strains expressing protein variants with an AAA motif instead of EAL are delayed in development, similar to null mutants. Global transcriptome analysis of ΔcdgB, ΔcdgC, ΔrmdA and ΔrmdB strains revealed that the c-di-GMP specified by these enzymes has a global regulatory role, with about 20 % of all S. venezuelae genes being differentially expressed in the cdgC mutant. Our data suggest that the major c-di-GMP-controlled targets determining the timing and mode of sporulation are genes involved cell division and the production of the hydrophobic sheath that covers Streptomyces aerial hyphae and spores. Altogether, this study provides a global view of the c-di-GMP-dependent genes that contribute to the hyphae-to-spores transition and sheds light on the shared and specific functions of the key enzymes involved in c-di-GMP metabolism in S. venezuelae.ImportanceStreptomyces are important producers of clinical antibiotics. The ability to synthesize these natural products is connected to their developmental biology, which includes a transition from filamentous cells to spores. The widespread bacterial second messenger c-di-GMP controls this complex switch and is a promising tool to improve antibiotic production. Here, we analyzed the enzymes that make and break c-di-GMP in S. venezuelae by studying the genome-wide transcriptional effects of the DGCs CdgB and CdgC and the PDEs RmdA and RmdB. We found that the c-di-GMP specified by these enzymes has a global regulatory role. However, despite shared enzymatic activities, the four c-di-GMP enzymes have specialized inputs into differentiation. Altogether, we demonstrate that altering c-di-GMP levels through the action of selected enzymes yields characteristically distinct transcriptional profiles; this can be an important consideration when modulating c-di-GMP for the purposes of natural product synthesis in Streptomyces.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Kurt M. Dahlstrom ◽  
Krista M. Giglio ◽  
Alan J. Collins ◽  
Holger Sondermann ◽  
George A. O’Toole

ABSTRACT Cyclic diguanylate (c-di-GMP) is a bacterial second messenger that controls multiple cellular processes. c-di-GMP networks have up to dozens of diguanylate cyclases (DGCs) that synthesize c-di-GMP along with many c-di-GMP-responsive target proteins that can bind and respond to this signal. For such networks to have order, a mechanism(s) likely exists that allow DGCs to specifically signal their targets, and it has been suggested that physical interactions might provide such specificity. Our results show a DGC from Pseudomonas fluorescens physically interacting with its target protein at a conserved interface, and this interface can be predictive of DGC-target protein interactions. Furthermore, we demonstrate that physical interaction is necessary for the DGC to maximally signal its target. If such “local signaling” is a theme for even a fraction of the DGCs used by bacteria, it becomes possible to posit a model whereby physical interaction allows a DGC to directly signal its target protein, which in turn may help curtail undesired cross talk with other members of the network. IMPORTANCE An important question in microbiology is how bacteria make decisions using a signaling network made up of proteins that make, break, and bind the second messenger c-di-GMP, which is responsible for controlling many cellular behaviors. Previous work has shown that a given DGC enzyme will signal for specific cellular outputs, despite making the same diffusible molecule as its sibling DGCs in the unpartitioned space of the bacterial cell. Understanding how one DGC differentiates its output from the dozens of other such enzymes in the cell is synonymous with understanding a large component of the bacterial decision-making machinery. We present evidence for a helix on a DGC used to physically associate with its target protein, which is necessary to achieve maximal signaling.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Yuan Chen ◽  
Jing Xia ◽  
Zhenhe Su ◽  
Gaoge Xu ◽  
Mark Gomelsky ◽  
...  

ABSTRACT Lysobacter enzymogenes is a ubiquitous soil gammaproteobacterium that produces a broad-spectrum antifungal antibiotic, known as heat-stable antifungal factor (HSAF). To increase HSAF production for use against fungal crop diseases, it is important to understand how HSAF synthesis is regulated. To gain insights into transcriptional regulation of the HSAF synthesis gene cluster, we generated a library with deletion mutations in the genes predicted to encode response regulators of the two-component signaling systems in L. enzymogenes strain OH11. By quantifying HSAF production levels in the 45 constructed mutants, we identified two strains that produced significantly smaller amounts of HSAF. One of the mutations affected a gene encoding a conserved bacterial response regulator, PilR, which is commonly associated with type IV pilus synthesis. We determined that L. enzymogenes PilR regulates pilus synthesis and twitching motility via a traditional pathway, by binding to the pilA promoter and upregulating pilA expression. Regulation of HSAF production by PilR was found to be independent of pilus formation. We discovered that the pilR mutant contained significantly higher intracellular levels of the second messenger cyclic di-GMP (c-di-GMP) and that this was the inhibitory signal for HSAF production. Therefore, the type IV pilus regulator PilR in L. enzymogenes activates twitching motility while downregulating antibiotic HSAF production by increasing intracellular c-di-GMP levels. This study identifies a new role of a common pilus regulator in proteobacteria and provides guidance for increasing antifungal antibiotic production in L. enzymogenes. IMPORTANCE PilR is a widespread response regulator of the two-component system known for regulating type IV pilus synthesis in proteobacteria. Here we report that, in the soil bacterium Lysobacter enzymogenes, PilR regulates pilus synthesis and twitching motility, as expected. Unexpectedly, PilR was also found to control intracellular levels of the second messenger c-di-GMP, which in turn inhibits production of the antifungal antibiotic HSAF. The coordinated production of type IV pili and antifungal antibiotics has not been observed previously.


2016 ◽  
Vol 198 (11) ◽  
pp. 1595-1603 ◽  
Author(s):  
Kurt M. Dahlstrom ◽  
Krista M. Giglio ◽  
Holger Sondermann ◽  
George A. O'Toole

ABSTRACTMany bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance of the I-site has not yet been incorporated into this model. Our results fromPseudomonas fluorescensindicate that mutation of residues at the I-site of a DGC disrupts the interaction with its target receptor. By creating various substitutions to a DGC's I-site, we show that signaling between a DGC (GcbC) and its target protein (LapD) is a combined function of the I-site-dependent protein-protein interaction and the level of c-di-GMP production. The dual role of the I-site in modulating DGC activity as well as participating in protein-protein interactions suggests caution in interpreting the function of the I-site as only a means to negatively regulate a cyclase. These results implicate the I-site as an important positive and negative regulatory element of DGCs that may contribute to signaling specificity.IMPORTANCESome bacteria contain several dozen diguanylate cyclases (DGCs), nearly all of which signal to specific receptors using the same small molecule, c-di-GMP. Signaling specificity in these networks may be partially driven by physical interactions between DGCs and their receptors, in addition to the autoinhibitory site of DGCs preventing the overproduction of c-di-GMP. In this study, we show that disruption of the autoinhibitory site of a DGC inPseudomonas fluorescenscan result in the loss of interactions with its target receptor and reduced biofilm formation, despite increased production of c-di-GMP. Our findings implicate the autoinhibitory site as both an important feature for signaling specificity through the regulation of c-di-GMP production and a necessary element for the physical interaction between a diguanylate cyclase and its receptor.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Noriyasu Shikura ◽  
Emmanuelle Darbon ◽  
Catherine Esnault ◽  
Ariane Deniset-Besseau ◽  
Delin Xu ◽  
...  

In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.


2020 ◽  
Vol 401 (12) ◽  
pp. 1323-1334
Author(s):  
Sandra Kunz ◽  
Peter L. Graumann

AbstractThe second messenger cyclic di-GMP regulates a variety of processes in bacteria, many of which are centered around the decision whether to adopt a sessile or a motile life style. Regulatory circuits include pathogenicity, biofilm formation, and motility in a wide variety of bacteria, and play a key role in cell cycle progression in Caulobacter crescentus. Interestingly, multiple, seemingly independent c-di-GMP pathways have been found in several species, where deletions of individual c-di-GMP synthetases (DGCs) or hydrolases (PDEs) have resulted in distinct phenotypes that would not be expected based on a freely diffusible second messenger. Several recent studies have shown that individual signaling nodes exist, and additionally, that protein/protein interactions between DGCs, PDEs and c-di-GMP receptors play an important role in signaling specificity. Additionally, subcellular clustering has been shown to be employed by bacteria to likely generate local signaling of second messenger, and/or to increase signaling specificity. This review highlights recent findings that reveal how bacteria employ spatial cues to increase the versatility of second messenger signaling.


New antibiotics are needed, ( a ) to control diseases that are refractory to existing ones either because of intrinsic or acquired drug resistance of the pathogen or because inhibition of the disease is difficult, at present, without damaging the host (fungal and viral diseases, and tumours), ( b ) for the control of plant pathogens and of invertebrates such as helminths, insects, etc., and ( c ) for growth promotion in intensive farming. Numerous new antibiotics are still being obtained from wild microbes, especially actinomycetes. Chemical modification of existing compounds has also had notable success. Here we explore the uses, actual and potential, of genetics to generate new antibiotics and to satisfy the ever-present need to increase yield. Yield improvement has depended in the past on mutation and selection, combined with optimization of fermentation conditions. Progress would be greatly accelerated by screening random recombinants between divergent high-yielding strains. Strain improvement may also be possible by the introduction of extra copies of genes of which the products are rate-limiting, or of genes conferring beneficial growth characteristics. Although new antibiotics can be generated by mutation, either through disturbing known biosyntheses or by activating ‘silent’ genes, we see more promise in interspecific recombination between strains producing different secondary metabolites, generating producers of ‘hybrid’ antibiotics. As with proposals for yield improvement, there are two major strategies for obtaining interesting recombinants of this kind: random recombination between appropriate strains, or the deliberate movement of particular biosynthetic abilities between strains. The development of protoplast technology in actinomycetes, fungi and bacilli has been instrumental in bringing these idealized strategies to the horizon. Protoplasts of the same or different species can be induced to fuse by polyethylene glycol. At least in intraspecific fusion of streptomycetes, random and high frequency recombination follows. Protoplasts can also be used as recipients for isolated DNA, again in the presence of polyethylene glycol, so that the deliberate introduction of particular genes into production strains can be realistically envisaged. Various kinds of DNA cloning vectors are being developed to this end. Gene cloning techniques also offer rich possibilities for the analysis of the genetic control of antibiotic biosynthesis, knowledge of which is, at present, minimal. The information that should soon accrue can be expected to have profound effects on the application of genetics to industrial microbiology.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Olga Sarenko ◽  
Gisela Klauck ◽  
Franziska M. Wilke ◽  
Vanessa Pfiffer ◽  
Anja M. Richter ◽  
...  

ABSTRACT The bacterial second messenger bis-(3′-5′)-cyclic diguanosine monophosphate (c-di-GMP) ubiquitously promotes bacterial biofilm formation. Intracellular pools of c-di-GMP seem to be dynamically negotiated by diguanylate cyclases (DGCs, with GGDEF domains) and specific phosphodiesterases (PDEs, with EAL or HD-GYP domains). Most bacterial species possess multiple DGCs and PDEs, often with surprisingly distinct and specific output functions. One explanation for such specificity is “local” c-di-GMP signaling, which is believed to involve direct interactions between specific DGC/PDE pairs and c-di-GMP-binding effector/target systems. Here we present a systematic analysis of direct protein interactions among all 29 GGDEF/EAL domain proteins of Escherichia coli . Since the effects of interactions depend on coexpression and stoichiometries, cellular levels of all GGDEF/EAL domain proteins were also quantified and found to vary dynamically along the growth cycle. Instead of detecting specific pairs of interacting DGCs and PDEs, we discovered a tightly interconnected protein network of a specific subset or “supermodule” of DGCs and PDEs with a coregulated core of five hyperconnected hub proteins. These include the DGC/PDE proteins representing the c-di-GMP switch that turns on biofilm matrix production in E. coli . Mutants lacking these core hub proteins show drastic biofilm-related phenotypes but no changes in cellular c-di-GMP levels. Overall, our results provide the basis for a novel model of local c-di-GMP signaling in which a single strongly expressed master PDE, PdeH, dynamically eradicates global effects of several DGCs by strongly draining the global c-di-GMP pool and thereby restricting these DGCs to serving as local c-di-GMP sources that activate specific colocalized effector/target systems. IMPORTANCE c-di-GMP signaling in bacteria is believed to occur via changes in cellular c-di-GMP levels controlled by antagonistic and potentially interacting pairs of diguanylate cyclases (DGCs) and c-di-GMP phosphodiesterases (PDEs). Our systematic analysis of protein-protein interaction patterns of all 29 GGDEF/EAL domain proteins of E. coli , together with our measurements of cellular c-di-GMP levels, challenges both aspects of this current concept. Knocking out distinct DGCs and PDEs has drastic effects on E. coli biofilm formation without changing the cellular c-di-GMP level. In addition, rather than generally coming in interacting DGC/PDE pairs, a subset of DGCs and PDEs operates as central interaction hubs in a larger "supermodule," with other DGCs and PDEs behaving as “lonely players” without contacts to other c-di-GMP-related enzymes. On the basis of these data, we propose a novel concept of “local” c-di-GMP signaling in bacteria with multiple enzymes that make or break the second messenger c-di-GMP.


2017 ◽  
Vol 14 (1) ◽  
pp. 25-44
Author(s):  
Tamer El-Maaddawy ◽  
◽  
Christopher Deneen ◽  

This paper aims to demonstrate how assessment tasks can function within an outcomes-based learning framework to evaluate student attainment of learning outcomes. An outcomes-based learning framework designed to integrate teaching, learning, and assessment activities was developed and implemented in a civil engineering master-level course. The assessment instruments for this course were designed together to form a deliberate, balanced, and practical approach to evaluating student attainment of learning outcomes within the outcomes-based learning initiative. Direct evidence of student learning was derived through analysis of student results in assessment tasks constructively aligned with intended outcomes of learning. Student feedback provided indirect evidence of student attainment of learning outcomes and confirmed the effectiveness of the learning approach implemented in the course under investigation. Results of the direct assessment instruments were, generally, consistent with the student self-perception confirming achievement of learning outcomes. Students tended, however, to overestimate the level of attainment of learning outcomes. Results of the present study are anticipated to assist educators and researchers to efficiently and effectively implement and evaluate outcomes-based learning in higher education thus improving educational quality and student learning


1968 ◽  
Vol 3 (1) ◽  
pp. 89-93
Author(s):  
W. K. BLENKINSOPP

Much indirect evidence supports the assumption that tritiated thymidine does not label cells which enter the deoxyribonucleic acid synthesis phase (S) more than 1 h after injection. Direct evidence confirming this assumption was obtained by counting labelled epithelial nuclei in mice killed 1, 4 or 6 h after a single intraperitoneal injection of [3H]thymidine; colchicine was used to prevent the increase in number of labelled nuclei which would otherwise have occurred because of cell division. The proportion of cells labelled was the same at 1 h as at 4 or 6 h after injection of [3H]thymidine. Nuclei were regarded as labelled if they were overlaid by 4 grains or more; comparison of nuclear and background labelling indicated that nuclei overlaid by 3 grains or less represented background labelling.


Sign in / Sign up

Export Citation Format

Share Document