scholarly journals In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Meifeng Zhu ◽  
Wen Li ◽  
Xianhao Dong ◽  
Xingyu Yuan ◽  
Adam C. Midgley ◽  
...  

Abstract Implanted scaffolds with inductive niches can facilitate the recruitment and differentiation of host cells, thereby enhancing endogenous tissue regeneration. Extracellular matrix (ECM) scaffolds derived from cultured cells or natural tissues exhibit superior biocompatibility and trigger favourable immune responses. However, the lack of hierarchical porous structure fails to provide cells with guidance cues for directional migration and spatial organization, and consequently limit the morpho-functional integration for oriented tissues. Here, we engineer ECM scaffolds with parallel microchannels (ECM-C) by subcutaneous implantation of sacrificial templates, followed by template removal and decellularization. The advantages of such ECM-C scaffolds are evidenced by close regulation of in vitro cell activities, and enhanced cell infiltration and vascularization upon in vivo implantation. We demonstrate the versatility and flexibility of these scaffolds by regenerating vascularized and innervated neo-muscle, vascularized neo-nerve and pulsatile neo-artery with functional integration. This strategy has potential to yield inducible biomaterials with applications across tissue engineering and regenerative medicine.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2400-2400
Author(s):  
Renata Giardini Rosa ◽  
Juares E. Romero Bianco ◽  
Gabriela Pereira dos Santos ◽  
Stephen D. Waldman ◽  
Joanna Weber ◽  
...  

Abstract Background: The idea of studying bone marrow outside its native environment is attractive and ideal. Due to the many functions of extracellular matrix (ECM), currently there is an interest in creating an environment that mimics the ECM present in the tissue, similar to the microenvironment in vivo. Molds replacing the ECM (scaffolds) have a porous structure and may assist the tissue regeneration by forming a suitable environment for adhesion, migration, proliferation and cellular differentiation. The appropriate ECM is a key factor as ECM proteins are site-specific and provide protein 'footprints' of previous resident cells. Because ECM proteins are among the most conserved proteins, the removal of xenogenic/allogenic cellular contents via decellularization could theoretically produce an essentially minimally immunogenic scaffold with a native intact structure for new tissue regeneration. Thus, the search for a scaffold that could be used to assess the behavior of cells and their interactions with the ECM in vitro/in vivo, and has different niches in its composition is highly desirable. Aims: In recent years, a large number of molecular and cytogenetic abnormalities have been identified in AML, MDS and multiple myeloma, many of these defects can serve as markers for diagnosis/prognosis or as therapeutic targets. However, there are still many unknown molecular factors involved in genetic abnormalities or signaling pathways that contribute to the pathogenesis of the disease. Another very important aspect of these diseases is that they all are related to the mutual interaction of neoplastic cells and the microenvironment of bone marrow. In the absence of an ideal model or even the difficulty in reproduce a native environment, we proposed the characterization of a natural scaffold, from bovine bone marrow, which can be used as a study model, previously patented by our laboratory. Materials and Methods: Bone marrow was decellularized by one or more incubations in an enzymatic digestion solution and polar solvent extractions, comprising an extracellular matrix with well-preserved 3D structure. Scaffolds were analyzed after the decelularization process for potential changes in structure (TEM, SEM, Histological staining, and immunohistochemistry for collagen III, IV, fibronectin) and mechanical properties. To verify if the scaffold would hold and support cell survival and extracellular matrix production, an in vitro study was performed using CD34+ (non-stromal) and HS-5 (stromal) cells. Cell-seeded decellularized scaffolds were cultured for 7-14 days and analyzed for Histological staining. Results: Histology sections (H&E staining), TEM and SEM demonstrated the structure and ultrastructure of the processed matrix and confirmed both cellular extraction and preservation of the macroscopic 3-D architecture of the collagen fibers, blood vessels, and preservation of an organized matrix. Also, the decellularized scaffold was quite comparable to the native tissue in terms of its mechanical properties. Immunohistochemistry of the scaffold showed that the main components of the ECM were preserved. The in vitro experiments of both stromal cells (HS-5) and non-stromal cells (CD34+) demonstrated that they were able to adhere and in the HS-5 case also produce ECM during 7-14 days of culture. In both cases, an increase in cell number was observed and CD34+ overtime formed cluster and with 14 days of culture the cluster formation increased in size. Conclusions: The results demonstrated that the decellularization process was efficient in keeping a 3-D structure and mechanical properties with a well-organized-preserved ECM. In vitro experiments showed that both CD34+ and HS-5 were able to proliferate and adhere in specific sites of the scaffold, suggesting that they were able to recognize their native environment. HS-5 produced ECM indicating that the scaffold worked as an optimal microenvironment. In conclusion, the scaffold could be used as a model, which has the potential to mimic the native microenvironment to enable research/studies of factors that are involved in self-renewal and maintenance of neoplastic cells in bone marrow. Also, this model could be very useful for pharmacological testing of bone marrow in vitro. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 10 (6) ◽  
pp. 513-521 ◽  
Author(s):  
W. Mark Erwin ◽  
Facundo Las Heras ◽  
Diana Islam ◽  
Michael G. Fehlings ◽  
Robert D. Inman

Object The intervertebral disc (IVD) is a highly avascular structure that is occupied by highly specialized cells (nucleus pulposus [NP] cells) that have adapted to survive within an O2 concentration of 2–5%. The object of this study was to investigate the effects of long-term hypoxic and normoxic tissue cultures of nonchondrodystrophic canine notochordal cells—cells that appear to protect the disc NP from degenerative change. Methods The authors obtained notochordal cells from nonchondrodystrophic canines according to their established methods and placed them into monolayer and 3D culture using sodium alginate globules under either hypoxic (3.5% O2) or normoxic (21% O2) conditions. Histological, immunohistochemical, scanning electron microscopy, and histomorphometric methods were used to evaluate the cells within the globules after 5 months in culture. Results Notochordal cells under in vitro hypoxic tissue culture conditions produced a highly complex, organized, 3D cellular construct that was strikingly similar to that observed in vivo. In contrast, traditional normoxic tissue culture conditions resulted in notochordal cells that failed to produce an organized matrix. Hypoxia resulted in a matrix rich in aggrecan and collagen II, whereas normoxic cultured cells did not produce any observable aggrecan or collagen II after 5 months of culture. Conclusions Hypoxia induces notochordal cells to organize a complex 3D cellular/extracellular matrix without an external scaffold other than suspension within sodium alginate. These cells produce an extracellular matrix and large construct that shares exactly the same characteristics as the in vivo condition—robust aggrecan, and type II collagen production. Normoxic tissue culture conditions, however, lead to a failure of these cells to thrive and a lack of extracellular matrix production and significantly smaller cells. The authors suggest that future studies of NP cells and, in particular, notochordal cells should utilize hypoxic tissue culture conditions to derive meaningful, biologically relevant conclusions concerning possible biological/molecular interventions.


1981 ◽  
Vol 90 (2) ◽  
pp. 332-338 ◽  
Author(s):  
R P Mecham ◽  
G Lange ◽  
J Madaras ◽  
B Starcher

Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Matthias Schnabelrauch ◽  
Jürgen Schiller ◽  
Stephanie Möller ◽  
Dieter Scharnweber ◽  
Vera Hintze

Abstract Tissue regeneration is regulated by the cellular microenvironment, e.g. the extracellular matrix. Here, sulfated glycosaminoglycans (GAG), are of vital importance interacting with mediator proteins and influencing their biological activity. Hence, they are promising candidates for controlling tissue regeneration. This review addresses recent achievements regarding chemically modified GAG as well as collagen/GAG-based coatings and hydrogels including (i) chemical functionalization strategies for native GAG, (ii) GAG-based biomaterial strategies for controlling cellular responses, (iii) (bio)chemical methods for characterization and iv) protein interaction profiles and attained tissue regeneration in vitro and in vivo. The potential of GAG for bioinspired, functional biomaterials is highlighted.


2021 ◽  
Author(s):  
Keel Yong Lee ◽  
Huong Nguyen ◽  
Agustina Setiawati ◽  
So-Jung Nam ◽  
Minyoung Kim ◽  
...  

Abstract The unfolded states of fibronectin (FN) subsequently induce the formation of the extracellular matrix (ECM) fibrillar network, which is necessary to generate new substitutive tissues. Here, we demonstrate that negatively charged small unilamellar vesicles (SUVs) qualify as candidates for FN delivery due to their remarkable effects on the autonomous binding and unfolding of FN, which leads to increased tissue regeneration. In vitro experiments revealed that the FN-SUV complex remarkably increased the attachment, differentiation, and migration of fibroblasts. The potential utilization of this complex in vivo to treat inflammatory colon diseases is also described based on results obtained for ameliorated conditions in rats with ulcerative colitis (UC) that had been treated with the FN-SUV complex. Our findings provide a new ECM-delivery platform for ECM-based therapeutic applications and suggest that properly designed SUVs could be an unprecedented FN-delivery system that is highly effective in treating UC and other diseases.


2005 ◽  
Vol 288-289 ◽  
pp. 257-260
Author(s):  
Dong Lim Seol ◽  
Won Hee Jang ◽  
Sung Jae Lee ◽  
Young Il Yang

The goal of this study was to investigate effects of fibrin reinforcement of collagen sponges on fibroblasts-mediated contraction and in vivo tissue regeneration, especially angiogenesis. Human dermal fibroblasts (HDFs)-populated collagen sponges reinforced with or without fibrin were cultivated via the free-floating method in vitro. They were then evaluated using xenogeneic implantation into nude mice. The HDFs-populated collagen sponges reinforced with fibrin exhibited significantly decreased HDFs-mediated contraction in vitro (p<0.05). Microvascular and cellular densities of the collagen sponges were significantly higher with fibrin than without (p<0.01). Cell ingrowths, neovascularization, and deposition of ECM matrix were more evenly distributed in the fibrin-reinforced collagen matrices. The results demonstrated that fibrin reinforcement of porous collagen sponges can reduce cell-mediated contraction in vitro while enhancing functional integration with surrounding tissue in vivo.


2021 ◽  
Vol 22 (22) ◽  
pp. 12560
Author(s):  
Su Hee Kim ◽  
Donghak Kim ◽  
Misun Cha ◽  
Soo Hyun Kim ◽  
Youngmee Jung

A dome-shaped elastic poly (l-lactide-co-caprolactone) (PLCL) scaffold with a channel and pore structure was fabricated by a combinative method of 3D printing technology and the gel pressing method (13 mm in diameter and 6.5 mm in thickness) for patient-specific regeneration. The PLCL scaffold was combined with adipose decellularized extracellular matrix (adECM) and heart decellularized extracellular matrix (hdECM) hydrogels and human adipose-derived stem cells (hADSCs) to promote adipogenesis and angiogenesis. These scaffolds had mechanical properties similar to those of native adipose tissue for improved tissue regeneration. The results of the in vitro real-time PCR showed that the dECM hydrogel mixture induces adipogenesis. In addition, the in vivo study at 12 weeks demonstrated that the tissue-engineered PLCL scaffolds containing the hydrogel mixture (hdECM/adECM (80:20)) and hADSCs promoted angiogenesis and adipose tissue formation, and suppressed apoptosis. Therefore, we expect that our constructs will be clinically applicable as material for the regeneration of patient-specific large-sized adipose tissue.


2015 ◽  
Vol 83 (5) ◽  
pp. 1881-1892 ◽  
Author(s):  
Chaoqun Chen ◽  
Zhou Zhou ◽  
Turner Conrad ◽  
Zhangsheng Yang ◽  
Jin Dai ◽  
...  

Although modernChlamydia muridarumhas been passaged for decades, there are no reports on the consequences of serial passage with strong selection pressure on its fitness. In order to explore the potential for Pasteurian selection to induce genomic and phenotypic perturbations toC. muridarum, a starter population was passaged in cultured cells for 28 generations without standard infection assistance. The resultant population, designated CMG28, displays markedly reducedin vitrodependence on centrifugation for infection and low incidence and severity of upper genital tract pathology following intravaginal inoculation into mice compared to the parentalC. muridarumpopulation, CMG0. Deep sequencing of CMG0 and CMG28 revealed novel protein variants in the hypothetical genes TC0237 (Q117E) and TC0668 (G322R).In vitroattachment assays of isogenic plaque clone pairs with mutations in either TC0237 and TC0668 or only TC0237 reveal that TC0237(Q117E) is solely responsible for enhanced adherence to host cells. Paradoxically, double mutants, but not TC0237(Q117E) single mutants, display severely attenuatedin vivopathogenicity. These findings implicate TC0237 and TC0668 as novel genetic factors involved in chlamydial attachment and pathogenicity, respectively, and show that serial passage under selection pressure remains an effective tool for studyingChlamydiapathogenicity.


Author(s):  
Chuanqi Liu ◽  
Ming Pei ◽  
Qingfeng Li ◽  
Yuanyuan Zhang

AbstractContributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell—matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.


2022 ◽  
Author(s):  
You Chen ◽  
Langtao Xu ◽  
Weilin Li ◽  
Wanqi Chen ◽  
Qiubei He ◽  
...  

Abstract The traditional evaluation of nanoparticles (NPs) is mainly based on 2D cell culture and animal models. However, these models are difficult to accurately represent human tumor microenvironment (TME) and fail to systematically study the complex transportation of NPs, thus limiting the translation of nano-drug formulations to clinical studies. This study reports a tumor model fabricated via 3D bioprinting with decellularized extracellular matrix (adECM) enhanced hybrid bioink. Compared with 2D cultured cells, the 3D printed tumor models with multicellular spheroids formation are closer to real tumor in protein, gene expression and tumorigenicity both in vitro and in vivo. Two characteristics of TME, ECM remodeling and epithelial-mesenchymal transition (EMT), are tracked simultaneously under 3D conditions. Furthermore, the cellular uptake efficiency of two different NPs is significantly lower in the printed 3D tumor model than the 2D individual cells, and higher drug resistance is observed in 3D group, which suggest the ECM barrier of tumor can significantly affect the permeability of NPs. These results suggest that this 3D printed tumor model is capable of mimicking the multiple TME, potentially providing a more accurate platform for the design and development of NPs before moving into animal and clinical trials.


Sign in / Sign up

Export Citation Format

Share Document