scholarly journals The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan D. Chow ◽  
Medha Majety ◽  
Sidi Chen

AbstractAge is a major risk factor for severe coronavirus disease-2019 (COVID-19). Here, we interrogate the transcriptional features and cellular landscape of the aging human lung. By intersecting these age-associated changes with experimental data on SARS-CoV-2, we identify several factors that may contribute to the heightened severity of COVID-19 in older populations. The aging lung is transcriptionally characterized by increased cell adhesion and stress responses, with reduced mitochondria and cellular replication. Deconvolution analysis reveals that the proportions of alveolar type 2 cells, proliferating basal cells, goblet cells, and proliferating natural killer/T cells decrease with age, whereas alveolar fibroblasts, pericytes, airway smooth muscle cells, endothelial cells and IGSF21+ dendritic cells increase with age. Several age-associated genes directly interact with the SARS-CoV-2 proteome. Age-associated genes are also dysregulated by SARS-CoV-2 infection in vitro and in patients with severe COVID-19. These analyses illuminate avenues for further studies on the relationship between age and COVID-19.

Author(s):  
Jessie Huang ◽  
Adam J. Hume ◽  
Kristine M. Abo ◽  
Rhiannon B. Werder ◽  
Carlos Villacorta-Martin ◽  
...  

ABSTRACTThe most severe and fatal infections with SARS-CoV-2 result in the acute respiratory distress syndrome, a clinical phenotype of coronavirus disease 2019 (COVID-19) that is associated with virions targeting the epithelium of the distal lung, particularly the facultative progenitors of this tissue, alveolar epithelial type 2 cells (AT2s). Little is known about the initial responses of human lung alveoli to SARS-CoV-2 infection due in part to inability to access these cells from patients, particularly at early stages of disease. Here we present an in vitro human model that simulates the initial apical infection of the distal lung epithelium with SARS-CoV-2, using AT2s that have been adapted to air-liquid interface culture after their derivation from induced pluripotent stem cells (iAT2s). We find that SARS-CoV-2 induces a rapid global transcriptomic change in infected iAT2s characterized by a shift to an inflammatory phenotype predominated by the secretion of cytokines encoded by NF-kB target genes, delayed epithelial interferon responses, and rapid loss of the mature lung alveolar epithelial program. Over time, infected iAT2s exhibit cellular toxicity that can result in the death of these key alveolar facultative progenitors, as is observed in vivo in COVID-19 lung autopsies. Importantly, drug testing using iAT2s confirmed an antiviral dose-response to remdesivir and demonstrated the efficacy of TMPRSS2 protease inhibition, validating a putative mechanism used for viral entry in human alveolar cells. Our model system reveals the cell-intrinsic responses of a key lung target cell to infection, providing a physiologically relevant platform for further drug development and facilitating a deeper understanding of COVID-19 pathogenesis.


2021 ◽  
Author(s):  
Bindu Konda ◽  
Apoorva Mulay ◽  
Changfu Yao ◽  
Edo Israely ◽  
Stephen Beil ◽  
...  

The epithelium lining airspaces of the human lung is maintained by regional stem cells including basal cells of pseudostratified airways and alveolar type 2 pneumocytes (AT2) of the alveolar gas-exchange region. Despite effective methods for long-term preservation of airway basal cells, methods for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single cell transcriptomic analysis, were used to compare cells recovered from cryopreserved tissue with those of freshly dissociated tissue. Alveolar type 2 cells within single cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HTII-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single cell transcriptome and their capacity for in vitro organoid formation in 3D cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype, and is ideally suited for creation of an easily accessible tissue resource for the research community.


Author(s):  
Ameen A. Salahudeen ◽  
Shannon S. Choi ◽  
Arjun Rustagi ◽  
Junjie Zhu ◽  
Sean M. de la O ◽  
...  

ABSTRACTThe distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5+ cells contained a distinct ITGA6+ITGB4+ mitotic population whose proliferation segregated to a TNFRSF12Ahi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12Ahi subset of FACS-purified ITGA6+ITGB4+ basal cells from human lung or derivative organoids. In vivo, TNFRSF12A+ cells comprised ~10% of KRT5+ basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 “apical-out” organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.


Author(s):  
Jaymin J. Kathiriya ◽  
Chaoqun Wang ◽  
Minqi Zhou ◽  
Alexis Brumwell ◽  
Monica Cassandras ◽  
...  
Keyword(s):  

2019 ◽  
Vol 93 (12) ◽  
pp. 3419-3489 ◽  
Author(s):  
F. Oesch ◽  
E. Fabian ◽  
Robert Landsiedel

Abstract The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.


2007 ◽  
Vol 292 (1) ◽  
pp. L232-L239 ◽  
Author(s):  
Jan T. Samuelsen ◽  
Per E. Schwarze ◽  
Henrik S. Huitfeldt ◽  
E. Vibeke Thrane ◽  
Marit Låg ◽  
...  

To elucidate the role of cAMP and different cAMP-dependent protein kinases (PKA; A-kinase) in lung cell proliferation, we investigated rat alveolar type 2 cell proliferation in relation to activation or inhibition of PKA and PKA regulatory subunits (RIIα and RIα). Both the number of proliferating type 2 cells and the level of different regulatory subunits varied during 7 days of culture. The cells exhibited a distinct peak of proliferation after 5 days of culture. This proliferation peak was preceded by a rise in RIIα protein level. In contrast, an inverse relationship between RIα and type 2 cell proliferation was noted. Activation of PKA increased type 2 cell proliferation if given at peak RIIα expression. Furthermore, PKA inhibitors lowered the rate of proliferation only when a high RII level was observed. An antibody against the anchoring region of RIIα showed cell cycle-dependent binding in contrast to antibodies against other regions, possibly related to altered binding to A-kinase anchoring protein. Following activation of PKA, relocalization of RIIα was confirmed by immunocytochemistry. In conclusion, it appears that activation of PKA II is important in regulation of alveolar type 2 cell proliferation.


1982 ◽  
Vol 95 (2) ◽  
pp. 394-402 ◽  
Author(s):  
J S Brody ◽  
C A Vaccaro ◽  
P J Gill ◽  
J E Silbert

We studied the ultrastructural characteristics of alveolar basement membranes (ABM) and capillary basement membranes (CBM) in rat lungs at birth, at 8-10 d of age, during alveolar formation, and at 6-10 wk of age, after most alveoli have formed. We also measured in vitro lung proteoglycan and heparan sulfate synthesis at each age. We noted three major age-related changes in pulmonary basement membranes. (a) Discontinuities in the ABM through which basilar cytoplasmic foot processes extend are present beneath alveolar type-2 cells but not alveolar type-1 cells. These discontinuities are most prevalent at birth but also exist in the adult. (b) Discontinuities are also present in CBM at the two earliest time points but are maximal at 8 d of age rather than at birth. Fusions between ABM and CBM are often absent at 8 d of age, but CBM and CBM/ABM fusions were complete in the adult. (c) Heparan sulfate proteoglycans identified with ruthenium red and selective enzyme degradation are distributed equally on epithelial and interstitial sides of the ABM lamina densa at birth, but decrease on the interstitial side with age. In vitro proteoglycan and heparan sulfate accumulation at birth was two times that at 8 d and five times that in the adult. Discontinuities in ABM allow epithelial-mesenchymal interactions that may influence type-2 cells cytodifferentiation. Discontinuities in CBM suggest that capillary proliferation and neovascularization are associated with alveolar formation at 8 d. When CBM becomes complete and forms junctions with ABM, lung neovascularization likely ends as does the ability to form new alveoli.


Author(s):  
Jaymin J. Kathiriya ◽  
Chaoqun Wang ◽  
Alexis Brumwell ◽  
Monica Cassandras ◽  
Claude Le Saux ◽  
...  

SUMMARYUnderstanding differential lineage potential of orthologous stem cells across species can shed light on human disease. Here, utilizing 3D organoids, single cell RNAseq, and xenotransplants, we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, are multipotent and able to transdifferentiate into KRT5+ basal cells when co-cultured with primary fibroblasts in 3D organoids. Trajectory analyses and immunophenotyping of epithelial progenitors in idiopathic pulmonary fibrosis (IPF) indicate that hAEC2s transdifferentiate into metaplastic basal cells through alveolar-basal intermediate (ABI) cells that we also identify in hAEC2-derived organoids. Modulating hAEC2-intrinsic and niche factors dysregulated in IPF can attenuate metaplastic basal cell transdifferentiation and preserve hAEC2 identity. Finally, hAEC2s transplanted into fibrotic immune-deficient murine lungs engraft as either hAEC2s or differentiated KRT5+ basal cells. Our study indicates that hAEC2s-loss and expansion of alveolar metaplastic basal cells in IPF are causally connected, which would not have been revealed utilizing murine AEC2s as a model.HighlightsHuman AEC2s transdifferentiate into KRT5+ basal cells when accompanied by primary adult human lung mesenchyme in 3D organoid culture.Alterations of hAEC2-intrinsic and niche factors dysregulated in IPF can modify metaplastic hAEC2 transdifferentiation.hAEC2s engraft into fibrotic lungs of immune-deficient mice and transdifferentiate into metaplastic basal cells.Transcriptional trajectory analysis suggests that hAEC2s in IPF gives rise to metaplastic basal cells via alveolar-basal intermediate cells.


2021 ◽  
Vol 2 ◽  
Author(s):  
Nikeya Tisdale-Macioce ◽  
Jenna Green ◽  
Anne-Karina T. Perl ◽  
Alan Ashbaugh ◽  
Nathan P. Wiederhold ◽  
...  

Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.


Sign in / Sign up

Export Citation Format

Share Document