scholarly journals Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter S. Ross ◽  
Stephen Chastain ◽  
Ekaterina Vassilenko ◽  
Anahita Etemadifar ◽  
Sarah Zimmermann ◽  
...  

AbstractMicroplastics are increasingly recognized as ubiquitous global contaminants, but questions linger regarding their source, transport and fate. We document the widespread distribution of microplastics in near-surface seawater from 71 stations across the European and North American Arctic - including the North Pole. We also characterize samples to a depth of 1,015 m in the Beaufort Sea. Particle abundance correlated with longitude, with almost three times more particles in the eastern Arctic compared to the west. Polyester comprised 73% of total synthetic fibres, with an east-to-west shift in infra-red signatures pointing to a potential weathering of fibres away from source. Here we suggest that relatively fresh polyester fibres are delivered to the eastern Arctic Ocean, via Atlantic Ocean inputs and/or atmospheric transport from the South. This raises further questions about the global reach of textile fibres in domestic wastewater, with our findings pointing to their widespread distribution in this remote region of the world.

ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 76 ◽  
Author(s):  
Tony R. Walker ◽  
Jon Grant ◽  
Peter Jarvis

The Mackenzie River is the largest river in the North American Arctic. Its huge freshwater and sediment load impacts the Canadian Beaufort Shelf, transporting large quantities of sediment and associated organic carbon into the Arctic Ocean. The majority of this sediment transport occurs during the freshet peak flow season (May to June). Mackenzie River-Arctic Ocean coupling has been widely studied during open water seasons, but has rarely been investigated in shallow water under landfast ice in Kugmallit Bay with field-based surveys, except for those using remote sensing. We observed and measured sedimentation rates (51 g m-2 d-1) and the concentrations of chlorophyll a (mean 2.2 ?g L-1) and suspended particulate matter (8.5 mg L-1) and determined the sediment characteristics during early spring, before the breakup of landfast ice in Kugmallit Bay. We then compared these results with comparable data collected from the same site the previous summer. Comparison of organic quality in seston and trapped material demonstrated substantial seasonal differences. The subtle changes in biological and oceanographic variables beneath landfast ice that we measured using sensors and field sampling techniques suggest the onset of a spring melt occurring hundreds of kilometres farther south in the Mackenzie Basin.


Eos ◽  
2017 ◽  
Author(s):  
Terri Cook

Samples of seawater from the North American Arctic show that the region is neither a major source nor sink of methane and nitrous oxide to the overlying atmosphere.


Tellus B ◽  
1988 ◽  
Vol 40B (5) ◽  
pp. 480-493 ◽  
Author(s):  
B. T. HARGRAVE ◽  
W. P. VASS ◽  
P. E. ERICKSON ◽  
B. R. FOWLER

Polar Record ◽  
2015 ◽  
Vol 52 (2) ◽  
pp. 252-255
Author(s):  
Klaus J. Dodds

President Barrack Obama became, in September 2015, the first US president to travel north of the Arctic Circle. Having started his Alaskan itinerary in Anchorage, attending and speaking at a conference involving Secretary of State John Kerry and invited guests, the president travelled north to the small town of Kotzebue, a community of some 3000 people with the majority of inhabitants identifying as native American. Delivered to an audience in the local high school numbering around 1000, the 41st US president placed his visit within a longer presidential tradition of northern visitation: I did have my team look into what other Presidents have done when they visited Alaska. I’m not the first President to come to Alaska.Warren Harding spent more than two weeks here – which I would love to do. But I can't leave Congress alone that long. (Laughter.) Something might happen. When FDR visited – Franklin Delano Roosevelt – his opponents started a rumor that he left his dog, Fala, on the Aleutian Islands – and spent 20 million taxpayer dollars to send a destroyer to pick him up. Now, I’m astonished that anybody would make something up about a President. (Laughter.) But FDR did not take it lying down. He said, “I don't resent attacks, and my family doesn't resent attacks – but Fala does resent attacks. He's not been the same dog since.” (Laughter.) President Carter did some fishing when he visited. And I wouldn't mind coming back to Alaska to do some fly-fishing someday. You cannot see Alaska in three days. It's too big. It's too vast. It's too diverse. (Applause.) So I’m going to have to come back. I may not be President anymore, but hopefully I’d still get a pretty good reception. (Applause.) And just in case, I’ll bring Michelle, who I know will get a good reception. (Applause.) . . .. But there's one thing no American President has done before – and that's travel above the Arctic Circle. (Applause.) So I couldn't be prouder to be the first, and to spend some time with all of you (Obama 2015a).


2015 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Ayan H. Chaudhuri ◽  
Rui M. Ponte

Abstract The authors examine five recent reanalysis products [NCEP Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Japanese 25-year Reanalysis Project (JRA-25), Interim ECMWF Re-Analysis (ERA-Interim), and Arctic System Reanalysis (ASR)] for 1) trends in near-surface radiation fluxes, air temperature, and humidity, which are important indicators of changes within the Arctic Ocean and also influence sea ice and ocean conditions, and 2) fidelity of these atmospheric fields and effects for an extreme event: namely, the 2007 ice retreat. An analysis of trends over the Arctic for the past decade (2000–09) shows that reanalysis solutions have large spreads, particularly for downwelling shortwave radiation. In many cases, the differences in significant trends between the five reanalysis products are comparable to the estimated trend within a particular product. These discrepancies make it difficult to establish a consensus on likely changes occurring in the Arctic solely based on results from reanalyses fields. Regarding the 2007 ice retreat event, comparisons with remotely sensed estimates of downwelling radiation observations against these reanalysis products present an ambiguity. Remotely sensed observations from a study cited herewith suggest a large increase in downwelling summertime shortwave radiation and decrease in downwelling summertime longwave radiation from 2006 and 2007. On the contrary, the reanalysis products show only small gains in summertime shortwave radiation, if any; however, all the products show increases in downwelling longwave radiation. Thus, agreement within reanalysis fields needs to be further checked against observations to assess possible biases common to all products.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 237-257
Author(s):  
Rebecca Shaftel ◽  
Daniel J. Rinella ◽  
Eunbi Kwon ◽  
Stephen C. Brown ◽  
H. River Gates ◽  
...  

AbstractAverage annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers affecting invertebrate availability, we modeled the biomass of invertebrates captured in modified Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confirmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively affected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey availability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level effects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.


1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


1975 ◽  
Vol 15 (73) ◽  
pp. 193-213
Author(s):  
Moira Dunbar

AbstractSLAR imagery of Nares Strait was obtained on three flights carried out in. January, March, and August of 1973 by Canadian Forces Maritime Proving and Evaluation Unit in an Argus aircraft equipped with a Motorola APS-94D SLAR; the March flight also covered two lines in the Arctic Ocean, from Alert 10 the North Pole and from the Pole down the long. 4ºE. meridian to the ice edge at about lat. 80º N. No observations on the ground were possible, but -some back-up was available on all flights from visual observations recorded in the air, and on the March flight from infrared line-scan and vertical photography.The interpretation of ice features from the SLAR imagery is discussed, and the conclusion reached that in spite of certain ambiguities the technique has great potential which will increase with improving resolution, Extent of coverage per distance flown and independence of light and cloud conditions make it unique among airborne sensors.


Sign in / Sign up

Export Citation Format

Share Document