scholarly journals Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dejiao Hu ◽  
Hao Li ◽  
Yupeng Zhu ◽  
Yuqiu Lei ◽  
Jing Han ◽  
...  

AbstractTwo-dimensional (2D) transition metal dichalcogenides (TMDs) with tantalizing layer-dependent electronic and optical properties have emerged as a paradigm for integrated flat opto-electronic devices, but their widespread applications are hampered by challenges in deterministic fabrication with demanded shapes and thicknesses, as well as light field manipulation in such atomic-thick layers with negligible thicknesses compared to the wavelength. Here we demonstrate ultra-sensitive light field manipulation in full visible ranges based on MoS2 laser prints exfoliated with nanometric precisions. The nontrivial interfacial phase shifts stemming from the unique dispersion of MoS2 layers integrated on the metallic substrate empower an ultra-sensitive resonance manipulation up to 13.95 nm per MoS2 layer across the entire visible bands, which is up to one-order-of-magnitude larger than their counterparts. The interlayer van der Waals interactions and the anisotropic thermal conductivity of layered MoS2 films endow a laser exfoliation method for on-demand patterning MoS2 with atomic thickness precision and subwavelength feature sizes. With this, nanometric flat color prints and further amplitude-modulated diffractive components for binocular stereoscopic images can be realized in a facile and lithography-free fashion. Our results with demonstrated practicality unlock the potentials of, and pave the way for, widespread applications of emerging 2D flat optics.

Nanophotonics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 1589-1600 ◽  
Author(s):  
M.A. Khan ◽  
Michael N. Leuenberger

AbstractThe discovery of two-dimensional (2D) materials has opened up new frontiers and challenges for exploring fundamental research. Recently, single-layer (SL) transition metal dichalcogenides (TMDCs) have emerged as candidate materials for electronic and optoelectronic applications. In contrast to graphene, SL TMDCs have sizable band gaps that change from indirect to direct in SLs, which is useful in making thinner and more efficient electronic devices, such as transistors, photodetectors, and electroluminescent devices. In addition, SL TMDCs show strong spin-orbit coupling effects at the valence band edges, giving rise to the observation of valley-selective optical excitations. Here, we review the basic electronic and optical properties of pure and defected group-VIB SL TMDCs, with emphasis on the strong excitonic effects and their prospect for future optoelectronic devices.


2021 ◽  
Author(s):  
Denice Feria ◽  
Sonia Sharma ◽  
Yu-Ting Chen ◽  
Zhi-Ying Weng ◽  
Kuo-Pin Chiu ◽  
...  

Abstract Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2 quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2 QDs. Investigating the NDR of WS2 QDs may promote the development of memory applications and emerging devices.


Author(s):  
Agraj Khare ◽  
Priyanka Dwivedi

Abstract Transition-metal Dichalcogenides (TMDs) materials are getting attention in the emerging trends of electronic devices development for a variety of applications. One of such materials is MoS2 which is best suited for developing deeply scaled field effect transistors (FETs). With the plethora of TMDs available, MoS2 is the most widely studied and used material because of its tunable properties like band gap, morphology, optical, structural, electrical, flexible etc. This paper represents the design and simulation aspect of the multi-layered MoS2 Based FET devices. Evidence of change in comparative electrical characteristics of MoS2 based FET devices due to variation of thickness and doping of the gate layer are also presented. In this contribution, we have simulated a full-wave model using the COMSOL Multiphysics module for two different thicknesses 0.7 nm and 1 nm. The FET device with 1 nm MoS2 offers a better dynamic range of operation and has a broader spectrum of threshold potential. The characteristic plots of the 1 nm device showed very less deviation from ideal trends than in the 0.7 nm device. The optimized FET structure offers better performance and efficiency in terms of electrical properties.


2019 ◽  
Vol 91 (11) ◽  
pp. 1777-1786 ◽  
Author(s):  
Yuta Saito ◽  
Paul Fons ◽  
Kirill V. Mitrofanov ◽  
Kotaro Makino ◽  
Junji Tominaga ◽  
...  

Abstract 2D van der Waals chalcogenides such as topological insulators and transition-metal dichalcogenides and their heterostructures are now at the forefront of semiconductor research. In this paper, we discuss the fundamental features and advantages of van der Waals bonded superlattices over conventional superlattices made of 3D materials and describe in more detail one practical example, namely, interfacial phase change memory based on GeTe–Sb2Te3 superlattice structures.


2D Materials ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 032004 ◽  
Author(s):  
Wenjuan Zhu ◽  
Tony Low ◽  
Han Wang ◽  
Peide Ye ◽  
Xiangfeng Duan

2015 ◽  
Vol 44 (9) ◽  
pp. 2629-2642 ◽  
Author(s):  
Hualing Zeng ◽  
Xiaodong Cui

The ultimate goal of making atomically thin electronic devices stimulates intensive research on layered materials, in particular the group-VI transition metal dichalcogenides (TMDs).


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Melanie Timpel ◽  
Giovanni Ligorio ◽  
Amir Ghiami ◽  
Luca Gavioli ◽  
Emanuele Cavaliere ◽  
...  

AbstractThe ongoing miniaturization of electronic devices has boosted the development of new post-silicon two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, one of the most prominent materials being molybdenum disulfide (MoS2). A major obstacle for the industrial production of MoS2-based devices lies in the growth techniques. These must ensure the reliable fabrication of MoS2 with tailored 2D properties to allow for the typical direct bandgap of 1.9 eV, while maintaining large-area growth and device compatibility. In this work, we used a versatile and industrially scalable MoS2 growth method based on ionized jet deposition and annealing at 250 °C, through which a 3D stable and scalable material exhibiting excellent electronic and optical properties of 2D MoS2 is synthesized. The thickness-related limit, i.e., the desired optical and electronic properties being limited to 2D single/few-layered MoS2, was overcome in the thin film through the formation of encapsulated highly crystalline 2D MoS2 nanosheets exhibiting a bandgap of 1.9 eV and sharp optical emission. The newly synthesized 2D-in-3D MoS2 structure will facilitate device compatibility of 2D materials and confer superior optoelectronic device function.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 49668-49674 ◽  
Author(s):  
Bo Feng ◽  
Xiaojia Liu ◽  
Yizhi Zheng ◽  
Qian Xiao ◽  
Na Wu ◽  
...  

The air-stable doping of transition-metal dichalcogenides is important in enabling a wide range of optoelectronic and electronic devices while exploring basic material properties.


1990 ◽  
Vol 198 ◽  
Author(s):  
Atsushi Koma

ABSTRACTThe lattice matching condition encountered usually in the heteroepitaxial growth has been proved to be relaxed drastically, if one uses the interface having van der Waals nature. Such interface can be realized on a cleaved face of a layered material or a quasi-one dimensional material and on a surface of a dangling-bond-terminated three dimensional material. Various kinds of heterostructures, which cannot be made by conventional growth methods, can be fabricated by using a variety of layered transition metal dichalcogenides, in which there exist superconducting, metallic, semiconducting or insulating layered materials. Moreover those heterostructures have been found to be grown on such an ordinary three-dimensional material as GaAs, if the dangling bonds on its surface are terminated by suitable atoms.


Sign in / Sign up

Export Citation Format

Share Document