scholarly journals The stability of subducted glaucophane with the Earth’s secular cooling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoonah Bang ◽  
Huijeong Hwang ◽  
Taehyun Kim ◽  
Hyunchae Cynn ◽  
Yong Park ◽  
...  

AbstractThe blueschist to eclogite transition is one of the major geochemical–metamorphic processes typifying the subduction zone, which releases fluids triggering earthquakes and arc volcanism. Although glaucophane is an index hydrous mineral for the blueschist facies, its stability at mantle depths in diverse subduction regimes of contemporary and early Earth has not been experimentally determined. Here, we show that the maximum depth of glaucophane stability increases with decreasing thermal gradients of the subduction system. Along cold subduction geotherm, glaucophane remains stable down ca. 240 km depth, whereas it dehydrates and breaks down at as shallow as ca. 40 km depth under warm subduction geotherm or the Proterozoic tectonic setting. Our results imply that secular cooling of the Earth has extended the stability of glaucophane and consequently enabled the transportation of water into deeper interior of the Earth, suppressing arc magmatism, volcanism, and seismic activities along subduction zones.

2020 ◽  
Author(s):  
Paolo Sossi ◽  
Antony Burnham ◽  
James Badro ◽  
Antonio Lanzirotti ◽  
Matt Newville ◽  
...  

<p>Outgassing of an early magma ocean on Earth plays a dominant role in determining the composition of its secondary atmosphere, and hence bears on the potential for the emergence of life. The stability of gaseous species in such an atmosphere reflects the redox state of the magma ocean. However, the relationship between oxygen fugacity (fO<sub>2</sub>) and the oxidation state of the most abundant polyvalent element, Fe, in likely magma ocean compositions is poorly constrained. Here we determine Fe<sup>2+</sup>/Fe<sup>3+</sup> ratios as a function of fO<sub>2</sub> in peridotite liquids, experimentally synthesised by aerodynamic laser levitation at 1 bar and 2173 K. We show that a magma ocean with Fe<sup>3+</sup>/∑Fe akin to that of contemporary upper mantle peridotite (0.037) would have had fO<sub>2</sub> 0.5 log units higher than the Fe-“FeO” equilibrium. At this relative fO<sub>2</sub>, a neutral CO<sub>2</sub>-H<sub>2</sub>O-dominated atmosphere of ~ 150 bar would have developed on the early Earth, taking into account the solubilities of the major volatiles, H, C, N and O in the magma ocean. Upon cooling, the Earth’s prebiotic atmosphere was likely comprised of CO<sub>2</sub>-N<sub>2</sub>, in proportions and at pressures akin to that on presently found on Venus.</p>


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


2013 ◽  
Vol 151 (5) ◽  
pp. 765-776 ◽  
Author(s):  
GI YOUNG JEONG ◽  
CHANG-SIK CHEONG ◽  
KEEWOOK YI ◽  
JEONGMIN KIM ◽  
NAMHOON KIM ◽  
...  

AbstractThe Phanerozoic subduction system of the Korean peninsula is considered to have been activated by at least Middle Permian time. The geochemically arc-like Andong ultramafic complex (AUC) occurring along the border between the Precambrian Yeongnam massif and the Cretaceous Gyeongsang back-arc basin provides a rare opportunity for direct study of the pre-Cretaceous mantle wedge lying above the subduction zone. The tightly constrained SHRIMP U–Pb age of zircons extracted from orthopyroxenite specimens (222.1±1.0 Ma) is indistinguishable from the Ar/Ar age of coexisting phlogopite (220±6 Ma). These ages represent the timing of suprasubduction zone magmatism likely in response to the sinking of cold and dense oceanic lithosphere and the resultant extensional strain regime in a nascent arc environment. The nearly coeval occurrence of a syenite-gabbro-monzonite suite in the SW Yeongnam massif also suggests an extensional tectonic setting along the continental margin side during Late Triassic time. The relatively enriched ɛHf range of dated zircons (+6.2 to −0.6 at 222 Ma) is in contrast to previously reported primitive Sr–Nd–Hf isotopic features of Cenozoic mantle xenoliths from Korea and eastern China. This enrichment is not ascribed to contamination by the hypothetical Palaeozoic crust beneath SE Korea, but is instead attributable to metasomatism of the lithospheric mantle during the earlier subduction of the palaeo-Pacific plate. Most AUC zircons show a restricted core-to-rim spread of ɛHf values, but some grains testify to the operation of open-system processes during magmatic differentiation.


2021 ◽  
Author(s):  
Banafsheh Vahdati ◽  
Seyed Ahmad Mazaheri

<p>Mashhad granitoid complex is part of the northern slope of the Binalood Structural Zone (BSZ), Northeast of Iran, which is composed of granitoids and metamorphic rocks. This research presents new petrological and geochemical whole-rock major and trace elements analyses in order to determine the origin of granitoid rocks from Mashhad area. Field and petrographic observations indicate that these granitoid rocks have a wide range of lithological compositions and they are categorized into intermediate to felsic intrusive rocks (SiO<sub>2</sub>: 57.62-74.39 Wt.%). Qartzdiorite, tonalite, granodiorite and monzogranite are common granitoids with intrusive pegmatite and aplitic dikes and veins intruding them. Based on geochemical analyses, the granitoid rocks are calc-alkaline in nature and they are mostly peraluminous. On geochemical variation diagrams (major and minor oxides versus silica) Na<sub>2</sub>O and K<sub>2</sub>O show a positive correlation with silica while Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, CaO, Fe<sub>2</sub>O<sub>3</sub>, and MgO show a negative trend. Therefore fractional crystallization played a considerable role in the evolution of Mashhad granitoids. Based on the spider diagrams, there are enrichments in LILE and depletion in HFSE. Low degrees of melting or crustal contamination may be responsible for LILE enrichment. Elements such as Pb, Sm, Dy and Rb are enriched, while Ba, Sr, Nd, Zr, P, Ti and Yb (in monzogranites) are all depleted. LREE enrichment and HREE depletion are observed in all samples on the Chondrite-normalized REE diagram. Similar trends may be evidence for the granitoids to have the same origin. Besides, LREE enrichment relative to HREE in some samples can indicate the presence of garnet in their source rock. Negative anomalies of Eu and Yb are observed in monzogranites. Our results show that Mashhad granitoid rocks are orogenic related and tectonic discrimination diagrams mostly indicate its syn-to-post collisional tectonic setting. No negative Nb anomaly compared with MORB seems to be an indication of non-subduction zone related magma formation. According to the theory of thrust tectonics of the Binalood region, the oceanic lithosphere of the Palo-Tethys has subducted under the Turan microplate. Since the Mashhad granitoid outcrops are settled on the Iranian plate, this is far from common belief that these granitoid rocks are related to the subduction zones and the continental arcs. The western Mashhad granitoids show more mafic characteristics and are possibly crystallized from a magma with sedimentary and igneous origin. Thus, Western granitoid outcrops in Mashhad are probably hybrid type and other granitoid rocks, S and SE Mashhad are S-type. Evidences suggest that these continental collision granitoid rocks are associated with the late stages of the collision between the Iranian and the Turan microplates during the Paleo-Tethys Ocean closure which occurred in the Late Triassic.</p>


2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


1999 ◽  
Vol 117 (5) ◽  
pp. 2561-2562 ◽  
Author(s):  
F. Namouni ◽  
C. D. Murray

Author(s):  
Timon Hummel ◽  
Claude Coatantiec ◽  
Xavier Gnata ◽  
Tobias Lamour ◽  
Rémi Rivière ◽  
...  

AbstractThe measurement accuracy of recent and future space-based imaging spectrometers with a high spectral and spatial resolution suffer from the inhomogeneity of the radiances of the observed Earth scene. The Instrument Spectral Response Function (ISRF) is distorted due to the inhomogeneous illumination from scene heterogeneity. This gives rise to a pseudo-random error on the measured spectra. In order to assess the spectral stability of the spectrograph, stringent requirements are typically defined on the ISRF such as shape knowledge and the stability of the centroid position of the spectral sample. The high level of spectral accuracy is particularly crucial for missions quantifying small variations in the total column of well-mixed trace gases like $$\hbox {CO}_{2}$$ CO 2 . In the framework of the $$\hbox {CO}_{2}$$ CO 2 Monitoring Mission (CO2M) industrial feasibility study (Phase A/B1 study), we investigated a new slit design called 2D-Slit Homogenizer (2DSH). This new concept aims to reduce the Earth scene contrast entering the instrument. The 2DSH is based on optical fibre waveguides assembled in a bundle, which scramble the light in across-track (ACT) and along-track (ALT) direction. A single fibre core dimension in ALT defines the spectral extent of the slit and the dimension in ACT represents the spatial sample of the instrument. The full swath is given by the total size of the adjoined fibres in ACT direction. In this work, we provide experimental measurement data on the stability of representative rectangular core shaped fibre as well as a preliminary pre-development of a 2DSH fibre bundle. In our study, the slit concept has demonstrated significant performance gains in the stability of the ISRF for several extreme high-contrast Earth scenes, achieving a shape stability of $$<0.5{\%}$$ < 0.5 % and a centroid stability of $$<0.25 \ \text {pm}$$ < 0.25 pm (NIR). Given this unprecedented ISRF stabilization, we conclude that the 2DSH concept efficiently desensitizes the instrument for radiometric and spectral errors with respect to the heterogeneity of the Earth scene radiance.


2019 ◽  
Vol 26 (1) ◽  
pp. 105
Author(s):  
Susana Borràs

<p>In the new 'Age of the Anthropocene', the Earth's atmosphere, like other elements of Nature, is rapidly being colonized by a minority of the world's population, at no cost, threatening the security of all humanity and the stability of the planet. The development processes of the great emitters of greenhouse gases have transferred social and environmental costs to all the world population, especially the most impoverished ones. This article is a critical analysis of how the legal climate change regime continues to legitimize the onslaught on the atmosphere. It reflects on the need to move to a new "climate justice law", characterized by responsibilities and obligations centered on the prevention, repair, restoration and treatment of damage and related risks linked to climate change, while protecting human rights and the atmosphere, as a common interest of humanity and the Earth.</p><p><strong>Keywords: </strong>Atmosphere, climate change, common concern of humankind, climate justice law<strong></strong></p>


2021 ◽  
pp. 136-149
Author(s):  
Natalia Aleksandrovna Balakleets

This author substantiates the thesis on the importance of spatial factors for conducting warfare. The article traces the evolution of warfare associated with the involvement of new territories and new types of spaces in the orbit of military activity. If the warfare of the past demonstrated a direct dependence on the geographical territory and the related &ldquo;tensions&rdquo; (C. von Clausewitz), the modern warfare are emancipated from the geographical shell of the Earth. The article explicates the factors that justify the need for arranging the new warfare spaces. Special attention is given to cyberspace, its structure, and conflicts unfolding therein. The scientific novelty of consists in the interpretation of cyberspace as an expected result of the spatial evolution of warfare. The conclusion is drawn that the emergence of cyberspace contributes to solution of the problem of information vagueness and creation of the stability zones for the military leaders, but at the same is a source of problems not less dangerous for the humanity. The cyberwar winner faces a tempting challenge of establishing global control over the territory of the plane using cyberweapon, or in most pessimistic scenario, its total destruction.


Sign in / Sign up

Export Citation Format

Share Document