scholarly journals Apico-basal cell compression regulates Lamin A/C levels in epithelial tissues

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Venkatesan Iyer ◽  
Anna Taubenberger ◽  
Salma Ahmed Zeidan ◽  
Natalie A. Dye ◽  
Suzanne Eaton ◽  
...  

AbstractThe levels of nuclear protein Lamin A/C are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated. Here, we show in epithelial tissues that Lamin A/C levels scale with apico-basal cell compression, independent of tissue stiffness. Using genetic perturbations in Drosophila epithelial tissues, we show that apico-basal cell compression regulates the levels of Lamin A/C by deforming the nucleus. Further, in mammalian epithelial cells, we show that nuclear deformation regulates Lamin A/C levels by modulating the levels of phosphorylation of Lamin A/C at Serine 22, a target for Lamin A/C degradation. Taken together, our results reveal a mechanism of Lamin A/C regulation which could provide key insights for understanding nuclear mechanotransduction in epithelial tissues.

2020 ◽  
Author(s):  
K Venkatesan Iyer ◽  
Natalie A. Dye ◽  
Suzanne Eaton ◽  
Frank Jülicher

ABSTRACTNuclear lamina bridges mechanical forces from the cytoskeleton to the nucleus, to initiate nuclear mechanotransduction. The concentration of nuclear Lamin proteins, particularly Lamin A/C is crucial for the mechanical properties of the nucleus and nuclear mechanotransduction. Recent studies in mesenchymal tissues show that the concentration of Lamin A/C scales with stiffness and concentration of the underlying extracellular matrix (ECM). But in epithelial tissues, that lack a strong cell-ECM interaction, it is still unclear how Lamin A/C is regulated. Here, we show that concentration of Lamin A/C in epithelial tissues scales with apico-basal compression of cells and is independent of ECM concentration. But, ectopically altering the concentration of Lamin A/C does not influence cell shapes in epithelial tissues. Using genetic perturbations in Drosophila epithelial tissues, we reveal that apico-basal cell compression regulates the concentration of Lamin A/C by deforming the nucleus. We observe a similar mechanism of Lamin A/C regulation in mammalian Madin Darby Canine Kidney (MDCK) cells suggesting that this mechanism is evolutionarily conserved. Taken together, our results reveal a unidirectional mechanical coupling between cell mechanics and nuclear mechanics via the regulation of Lamin A/C. We anticipate that mechanism of Lamin A/C regulation that we revealed, could form the basis for understanding nuclear mechanotransduction in epithelial tissues.


2021 ◽  
Author(s):  
Aapo Tervonen ◽  
Sanna Korpela ◽  
Soile Nymark ◽  
Jari Hyttinen ◽  
Teemu O Ihalainen

AbstractIn recent years, the importance of mechanical signaling and the cellular mechanical microenvironment in affecting cellular behavior has been widely accepted. Cells in epithelial monolayers are mechanically connected to each other and the underlying extracellular matrix (ECM), forming a highly connected mechanical system subjected to various mechanical cues from their environment, such as the ECM stiffness. Changes in the ECM stiffness have been linked to many pathologies, including tumor formation. However, our understanding of how ECM stiffness and its heterogeneities affect the transduction of mechanical forces in epithelial monolayers is lacking. To investigate this, we used a combination of experimental and computational methods. The experiments were conducted using epithelial cells cultured on an elastic substrate and applying a mechanical stimulus by moving a single cell by micromanipulation. To replicate our experiments computationally and quantify the forces transduced in the epithelium, we developed a new model that described the mechanics of both the cells and the substrate. Our model further enabled the simulations with local stiffness heterogeneities. We found the substrate stiffness to distinctly affect the force transduction as well as the cellular movement and deformation following an external force. Also, we found that local changes in the stiffness can alter the cells’ response to external forces over long distances. Our results suggest that this long-range signaling of the substrate stiffness depends on the cells’ ability to resist deformation. Furthermore, we found that the cell’s elasticity in the apico-basal direction provides a level of detachment between the apical cell-cell junctions and the basal focal adhesions. Our simulation results show potential for increased ECM stiffness, e.g. due to a tumor, to modulate mechanical signaling between cells also outside the stiff region. Furthermore, the developed model provides a good platform for future studies on the interactions between epithelial monolayers and elastic substrates.Author summaryCells can communicate using mechanical forces, which is especially important in epithelial tissues where the cells are highly connected. Also, the stiffness of the material under the cells, called the extracellular matrix, is known to affect cell behavior, and an increase in this stiffness is related to many diseases, including cancers. However, it remains unclear how the stiffness affects intercellular mechanical signaling. We studied this effect using epithelial cells cultured on synthetic deformable substrates and developed a computational model to quantify the results better. In our experiments and simulations, we moved one cell to observe how the substrate stiffness impacts the deformation of the neighboring cells and thus the force transduction between the cells. Our model also enabled us to study the effect of local stiffness changes on the force transduction. Our results showed that substrate stiffness has an apparent impact on the force transduction within the epithelial tissues. Furthermore, we found that the cells can communicate information on the local stiffness changes over long distances. Therefore, our results indicate that the cellular mechanical signaling could be affected by changes in the substrate stiffness which may have a role in the progression of diseases such as cancer.


1985 ◽  
Vol 79 (1) ◽  
pp. 119-136
Author(s):  
J.D. Aplin ◽  
S. Campbell ◽  
T.D. Allen

Ultrastructural comparisons have been made between human amnion extracellular matrix in tissue and cell culture. Immunochemical analysis of matrix deposited by monolayers of cultured amnion epithelial cells has also been undertaken. The basal cell surfaces are highly invaginated with an associated basal lamina that is more electron dense at the distal tips of basal cell processes where hemidesmosomes are frequent. Immediately below the lamina densa is a zone rich in collagen bundles. In the underlying stroma two types of fibril predominate, one striated of 50 nm diameter and one of 18 nm diameter. The observations suggest that at gestational term the epithelial cells are still active in the production of matrix. Secretion appears to occur into invaginations in the basal cell surface where a loosely organized mixture of stromal-type and basal laminal-type aggregates is formed. In culture on plastic, cells also deposit a mixture of basal laminal (type IV collagen + laminin) and stromal (collagens type I + III) components as well as fibronectin. However, segregation into a true basal lamina with underlying stroma does not occur in vitro, suggesting the need for an organized subcellular template to complete matrix morphogenesis. The in vitro and in vivo evidence suggest that the epithelium contributes to the subjacent dense collagenous zone as well as to the basal lamina.


2001 ◽  
Vol 280 (2) ◽  
pp. L191-L202 ◽  
Author(s):  
Yihe Guo ◽  
Cara Martinez-Williams ◽  
Clare E. Yellowley ◽  
Henry J. Donahue ◽  
D. Eugene Rannels

Extracellular matrix (ECM) proteins promote attachment, spreading, and differentiation of cultured alveolar type II epithelial cells. The present studies address the hypothesis that the ECM also regulates expression and function of gap junction proteins, connexins, in this cell population. Expression of cellular fibronectin and connexin (Cx) 43 increase in parallel during early type II cell culture as Cx26 expression declines. Gap junction intercellular communication is established over the same interval. Cells plated on a preformed, type II cell-derived, fibronectin-rich ECM demonstrate accelerated formation of gap junction plaques and elevated gap junction intercellular communication. These effects are blocked by antibodies against fibronectin, which cause redistribution of Cx43 protein from the plasma membrane to the cytoplasm. Conversely, cells cultured on a laminin-rich ECM, Matrigel, express low levels of Cx43 but high levels of Cx26, reflecting both transcriptional and translational regulation. Cx26 and Cx43 thus demonstrate reciprocal regulation by ECM constituents.


2007 ◽  
Vol 92 (10) ◽  
pp. 3941-3948
Author(s):  
Stephanie C. Hsu ◽  
Joshua D. Groman ◽  
Christian A. Merlo ◽  
Kathleen Naughton ◽  
Pamela L. Zeitlin ◽  
...  

Abstract Context: Patients with Albright hereditary osteodystrophy (AHO) have defects in stimulatory G protein signaling due to loss of function mutations in GNAS. The mechanism by which these mutations lead to the AHO phenotype has been difficult to establish due to the inaccessibility of the affected tissues. Objective: The objective of the study was to gain insight into the downstream consequences of abnormal stimulatory G protein signaling in human epithelial tissues. Patients and Design: We assessed transcription of GNAS and Gsα-stimulated activation of the cystic fibrosis transmembrane conductance regulator (CFTR) in AHO patients, compared with normal controls and patients with cystic fibrosis. Main Outcome Measures: Relative expression of Gsα transcripts from each parental GNAS allele and cAMP measurements from nasal epithelial cells were compared among normal controls and AHO patients. In vivo measurements of CFTR function, pulmonary function, and pancreatic function were assessed in AHO patients. Results: GNAS was expressed equally from each allele in normals and two of five AHO patients. cAMP generation was significantly reduced in nasal respiratory epithelial cells from AHO patients, compared with normal controls (0.4 vs. 0.6, P = 0.0008). Activation of CFTR in vivo in nasal (P = 0.0065) and sweat gland epithelia (P = 0.01) of AHO patients was significantly reduced from normal. In three patients, the reduction in activity was comparable with patients with cystic fibrosis due to mutations in CFTR. Yet no AHO patients had pulmonary or pancreatic disease consistent with cystic fibrosis. Conclusions: In humans, haploinsufficiency of GNAS causes a significant reduction in the activation of the downstream target, CFTR, in vivo.


Sign in / Sign up

Export Citation Format

Share Document