scholarly journals Forecasting the dissemination of antibiotic resistance genes across bacterial genomes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mostafa M. H. Ellabaan ◽  
Christian Munck ◽  
Andreas Porse ◽  
Lejla Imamovic ◽  
Morten O. A. Sommer

AbstractAntibiotic resistance spreads among bacteria through horizontal transfer of antibiotic resistance genes (ARGs). Here, we set out to determine predictive features of ARG transfer among bacterial clades. We use a statistical framework to identify putative horizontally transferred ARGs and the groups of bacteria that disseminate them. We identify 152 gene exchange networks containing 22,963 bacterial genomes. Analysis of ARG-surrounding sequences identify genes encoding putative mobilisation elements such as transposases and integrases that may be involved in gene transfer between genomes. Certain ARGs appear to be frequently mobilised by different mobile genetic elements. We characterise the phylogenetic reach of these mobilisation elements to predict the potential future dissemination of known ARGs. Using a separate database with 472,798 genomes from Streptococcaceae, Staphylococcaceae and Enterobacteriaceae, we confirm 34 of 94 predicted mobilisations. We explore transfer barriers beyond mobilisation and show experimentally that physiological constraints of the host can explain why specific genes are largely confined to Gram-negative bacteria although their mobile elements support dissemination to Gram-positive bacteria. Our approach may potentially enable better risk assessment of future resistance gene dissemination.

2013 ◽  
Vol 80 (4) ◽  
pp. 1482-1488 ◽  
Author(s):  
Jing Yang ◽  
Chao Wang ◽  
Jinyu Wu ◽  
Li Liu ◽  
Gang Zhang ◽  
...  

ABSTRACTThe genusExiguobacteriumcan adapt readily to, and survive in, diverse environments. Our study demonstrated thatExiguobacteriumsp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes inEscherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid fromExiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms.


2017 ◽  
Author(s):  
Christian Munck ◽  
Mostafa M. Hashim Ellabaan ◽  
Michael Schantz Klausen ◽  
Morten O.A. Sommer

AbstractGenes capable of conferring resistance to clinically used antibiotics have been found in many different natural environments. However, a concise overview of the resistance genes found in common human bacterial pathogens is lacking, which complicates risk ranking of environmental reservoirs. Here, we present an analysis of potential antibiotic resistance genes in the 17 most common bacterial pathogens isolated from humans. We analyzed more than 20,000 bacterial genomes and defined a clinical resistome as the set of resistance genes found across these genomes. Using this database, we uncovered the co-occurrence frequencies of the resistance gene clusters within each species enabling identification of co-dissemination and co-selection patterns. The resistance genes identified in this study represent the subset of the environmental resistome that is clinically relevant and the dataset and approach provides a baseline for further investigations into the abundance of clinically relevant resistance genes across different environments. To facilitate an easy overview the data is presented at the species level at www.resistome.biosustain.dtu.dk.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Yu Pan ◽  
Jiaxiong Zeng ◽  
Liguan Li ◽  
Jintao Yang ◽  
Ziyun Tang ◽  
...  

ABSTRACT Widespread use of antibiotics has enhanced the evolution of highly resilient pathogens and poses a severe risk to human health via coselection of antibiotic resistance genes (ARGs) and virulence factors (VFs). In this study, we rigorously evaluate the abundance relationship and physical linkage between ARGs and VFs by performing a comprehensive analysis of 9,070 bacterial genomes isolated from multiple species and hosts. The coexistence of ARGs and VFs was observed in bacteria across distinct phyla, pathogenicities, and habitats, especially among human-associated pathogens. The coexistence patterns of gene elements in different habitats and pathogenicity groups were similar, presumably due to frequent gene transfer. A shorter intergenic distance between mobile genetic elements and ARGs/VFs was detected in human/animal-associated bacteria, indicating a higher transfer potential. Increased accumulation of exogenous ARGs/VFs in human pathogens highlights the importance of gene acquisition in the evolution of human commensal bacteria. Overall, the findings provide insights into the genic features of combinations of ARG-VF and expand our understanding of ARG-VF coexistence in bacteria. IMPORTANCE Antibiotic resistance has become a serious global health concern. Despite numerous case studies, a comprehensive analysis of ARG and VF coexistence in bacteria is lacking. In this study, we explore the coexistence profiles of ARGs and VFs in diverse categories of bacteria by using a high-resolution bioinformatics approach. We also provide compelling evidence of unique ARG-VF gene pairs coexisting in specific bacterial genomes and reveal the potential risk associated with the coexistence of ARGs and VFs in organisms in both clinical settings and environments.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher J. Harmer ◽  
Ruth M. Hall

ABSTRACT IS26 has been shown to form cointegrates both by a copy-in mechanism involving one insertion sequence (IS) and a target and by a targeted conservative mechanism involving two ISs. IS26 is the flagship of a group of 65 bacterial ISs in the recently redefined IS6/IS26 family. Here, whether other family members can also use two mechanisms was examined using members of the IS257/IS431 and IS1216 isoform groups, which are associated with antibiotic resistance genes in staphylococci and enterococci, respectively. Transposases Tnp257 and Tnp1216 have 39% and 47% amino acid identities, respectively, with Tnp26 and are 62% identical to one another. Using a novel transposition assay, pUC-based plasmids carrying these ISs integrated into the chromosome of a temperature-sensitive polA Escherichia coli strain grown at the restrictive temperature. In the cointegrates, the plasmid carrying IS257 was flanked by various 8-bp target site duplications, consistent with random target selection. However, in a mating-out assay, only the targeted conservative reaction was detectable at a low frequency in a recA-negative E. coli strain, indicating that IS257 is at least 100-fold less active than IS26. For IS1216, in mating-out assays, both copy-in and targeted conservative cointegrate formation were detectable at frequencies similar to those observed for IS26. Duplication of various 8-bp target sites was detected for the copy-in route. For both IS257 and IS1216, when both of the plasmids carried an IS, the targeted conservative route occurred at a significantly higher frequency than the copy-in route, and only cointegrates formed by the conservative route were detected. IMPORTANCE IS26 differs from other studied ISs in the reactions that it can undertake. The differences make IS26 uniquely suited to its key role in the recruitment and spread of antibiotic resistance genes in Gram-negative bacteria. However, whether other ISs in the IS6/IS26 family can perform the same reactions is not known. IS257/IS431 and IS1216 isoforms found associated with antibiotic resistance genes in the Gram-positive bacteria staphylococci, enterococci, streptococci, and clostridia are related to IS26. However, the way that they move had not been investigated, limiting interpretation of their role in resistance gene dissemination and in the formation of cointegrates and complex resistance regions in staphylococci and enterococci. Here, they are shown to share the broad catalytic capabilities of IS26, demonstrating that it is likely that all members of the redefined IS6/IS26 family of bacterial ISs likewise are able to use both the copy-in and conservative routes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2020 ◽  
Vol 18 (4) ◽  
pp. 477-493
Author(s):  
Johannes Cornelius Jacobus Fourie ◽  
Cornelius Carlos Bezuidenhout ◽  
Tomasz Janusz Sanko ◽  
Charlotte Mienie ◽  
Rasheed Adeleke

Abstract Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide–lincosamide–streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Christopher J. Harmer ◽  
Ruth M. Hall

ABSTRACTWe recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26from a compound transposon bounded by IS26. In arecAmutant strain, Tn4352, a kanamycin resistance transposon carrying theaphA1agene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26transposase Tnp26. However, the Tnp26 of only one IS26in Tn4352B was required, specifically the IS26downstream of theaphA1agene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352.These G residues are located immediately adjacent to the two G residues at the left end of the IS26that is upstream of theaphA1agene. Transcription oftnp26was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end.IMPORTANCEResistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26plays a major role in the acquisition and dissemination of antibiotic resistance. IS257(IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26can use a conservative movement mechanism in which an incoming IS26targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26by examining whether the reverse precise excision reaction is also catalyzed by the IS26transposase.


2020 ◽  
Vol 295 (32) ◽  
pp. 10870-10884 ◽  
Author(s):  
J. Andrew N. Alexander ◽  
Mariia Radaeva ◽  
Dustin T. King ◽  
Henry F. Chambers ◽  
Artem Cherkasov ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) infections cause significant mortality and morbidity globally. MRSA resistance to β-lactam antibiotics is mediated by two divergons that control levels of a β-lactamase, PC1, and a penicillin-binding protein poorly acylated by β-lactam antibiotics, PBP2a. Expression of genes encoding these proteins is controlled by two integral membrane proteins, BlaR1 and MecR1, which both have an extracellular β-lactam–binding sensor domain. Here, we solved the X-ray crystallographic structures of the BlaR1 and MecR1 sensor domains in complex with avibactam, a diazabicyclooctane β-lactamase inhibitor at 1.6–2.0 Å resolution. Additionally, we show that S. aureus SF8300, a clinically relevant strain from the USA300 clone of MRSA, responds to avibactam by up-regulating the expression of the blaZ and pbp2a antibiotic-resistance genes, encoding PC1 and PBP2a, respectively. The BlaR1–avibactam structure of the carbamoyl-enzyme intermediate revealed that avibactam is bound to the active-site serine in two orientations ∼180° to each other. Although a physiological role of the observed alternative pose remains to be validated, our structural results hint at the presence of a secondary sulfate-binding pocket that could be exploited in the design of future inhibitors of BlaR1/MecR1 sensor domains or the structurally similar class D β-lactamases. The MecR1–avibactam structure adopted a singular avibactam orientation similar to one of the two states observed in the BlaR1–avibactam structure. Given avibactam up-regulates expression of blaZ and pbp2a antibiotic resistance genes, we suggest further consideration and research is needed to explore what effects administering β-lactam–avibactam combinations have on treating MRSA infections.


Sign in / Sign up

Export Citation Format

Share Document