scholarly journals High-efficiency CO2 separation using hybrid LDH-polymer membranes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaozhi Xu ◽  
Jiajie Wang ◽  
Awu Zhou ◽  
Siyuan Dong ◽  
Kaiqiang Shi ◽  
...  

AbstractMembrane-based gas separation exhibits many advantages over other conventional techniques; however, the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Herein, (LDH/FAS)n-PDMS hybrid membranes, containing two-dimensional sub-nanometre channels were fabricated via self-assembly of unilamellar layered double hydroxide (LDH) nanosheets and formamidine sulfinic acid (FAS), followed by spray-coating with a poly(dimethylsiloxane) (PDMS) layer. A CO2 transmission rate for (LDH/FAS)25-PDMS of 7748 GPU together with CO2 selectivity factors (SF) for SF(CO2/H2), SF(CO2/N2) and SF(CO2/CH4) mixtures as high as 43, 86 and 62 respectively are observed. The CO2 permselectivity outperforms most reported systems and is higher than the Robeson or Freeman upper bound limits. These (LDH/FAS)n-PDMS membranes are both thermally and mechanically robust maintaining their highly selective CO2 separation performance during long-term operational testing. We believe this highly-efficient CO2 separation performance is based on the synergy of enhanced solubility, diffusivity and chemical affinity for CO2 in the sub-nanometre channels.

2014 ◽  
Vol 2 (39) ◽  
pp. 6758-6766 ◽  
Author(s):  
Songtao Liu ◽  
Lijuan Chen ◽  
Lin Tan ◽  
Fuhu Cao ◽  
Longchao Bai ◽  
...  

The stability and long-term antifouling properties of the electro-assembly monolayers of PEG-o-quinone are better than that of the self-assembly monolayers of PEG-catechol.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2020 ◽  
Vol 20 ◽  
Author(s):  
L. Hajba ◽  
A. Guttman

: Adeno-associated virus (AAV) is one of the most promising viral gene delivery vectors with long-term gene expression and disease correction featuring high efficiency and excellent safety in human clinical trials. During the production of AAV vectors,there are several quality control (QC)parameters that should be rigorously monitored to comply with clini-cal safety and efficacy. This review gives a short summary of the most frequently used AVV production and purification methods,focusing on the analytical techniques applied to determine the full/empty capsid ratio and the integrity of the encapsidated therapeutic DNA of the products.


Author(s):  
Ming Yan ◽  
Yilin Wu ◽  
Rongxin Lin ◽  
Faguang Ma ◽  
Zhongyi Jiang

Although many researchers have done lots of studies on improving the selective separation performance of membrane materials, conceptions and applications of membrane-based molecular imprinting separation&recognition with both high permselectivity and...


2014 ◽  
Vol 1622 ◽  
pp. 1-6
Author(s):  
Yong Wu ◽  
Jing Liang ◽  
Qichen Wang ◽  
Matthew Libera

ABSTRACTMicrogels are hydrogel particles with micron and sub-micron diameters. They have beendeveloped, studied, and exploited for a broad range of applications because of their uniquecombination of size, soft mechanical properties, and controllable network properties. We havebeen using microgels to modulate the properties of surfaces to differentially control theirinteractions with tissue cells and bacteria. The long-term goal is to create biomaterials thatpromote healing while simultaneously inhibiting infection. Because poly(ethylene glycol) [PEG]is used in a number of FDA-approved products and has well-known antifouling properties, wework primarily with PEG-based microgels. We render these anionic either by copolymerizationwith monomeric acids or by blending with polyacids. Both methods produce pH-dependentnegative charge. Surfaces, both planar 2-D surfaces as well as topographically complex 3-Dsurfaces, can be modified using a hierarchy of non-line-of-sight electrostatic depositionprocesses that create biomaterials surfaces whose cell adhesiveness is modulated by a submonolayerof microgels. Average inter-microgel spacings of 1-2 microns exploit naturaldifferences between staphylococcal bacteria and tissue cells, which open the opportunity todifferentially control surface interactions with them based on length-scale effects. Afterdeposition, the microgels can be loaded with a variety of small-molecule, cationic antimicrobials.The details of loading depend on the relative sizes of the antimicrobials and the microgelnetwork structure as well as on the amount and spatial distribution of electrostatic charge withinboth the microgel and on the antimicrobial. The exposed surface between microgels can befurther modified by the adsorption of adhesion-promoting proteins such as fibronectin viaelectrostatic interaction. This approach combines a rich interplay of microgel structure andchemistry as a key component in a simple and translatable approach to modulate the surfaceproperties of next-generation biomaterials.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 756
Author(s):  
Guoqiang Li ◽  
Katarzyna Knozowska ◽  
Joanna Kujawa ◽  
Andrius Tonkonogovas ◽  
Arūnas Stankevičius ◽  
...  

The development of thin layer on hollow-fiber substrate has drawn great attention in the gas-separation process. In this work, polydimethysiloxane (PDMS)/polyetherimide (PEI) hollow-fiber membranes were prepared by using the dip-coating method. The prepared membranes were characterized by Scanning Electron Microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and gas permeance measurements. The concentration of PDMS solution and coating time revealed an important influence on the gas permeance and the thickness of the PDMS layer. It was confirmed from the SEM and EDX results that the PDMS layer’s thickness and the atomic content of silicon in the selective layer increased with the growth in coating time and the concentration of PDMS solution. The composite hollow-fiber membrane prepared from 15 wt% PDMS solution at 10 min coating time showed the best gas-separation performance with CO2 permeance of 51 GPU and CO2/N2 ideal selectivity of 21.


Sign in / Sign up

Export Citation Format

Share Document