scholarly journals Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Rogawski ◽  
Jing Deng ◽  
Hao Li ◽  
Hongzhi Miao ◽  
Dmitry Borkin ◽  
...  

AbstractASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.

2020 ◽  
Vol 117 (45) ◽  
pp. 27989-27996
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

Escherichia coliperiplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246–mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


Author(s):  
Bo Cheng ◽  
Aimei Rong ◽  
Quanbo Zhou ◽  
Wenlu Li

Abstract Background LncRNA LINC00662 is closely related to the occurrence and development of cancer. This study aims to explore the effect of LINC00662 on colon cancer tumor growth and metastasis and its molecular mechanism. Methods CCK8, colony formation, transwell, scratch wound, TUNEL, flow cytometry, RT-PCR, western blotting and immunohistochemistry assays were used to detect the proliferation, apoptosis, invasion and migration of colon cancer cell and mRNA and protein expressions. Luciferase reporter and RNA pull down assays were used to detect the combination of LINC00662 and miR-340-5p or IL22 and the combination of miR-340-5p and CLDN8/IL22. Co-immunoprecipitation were used to detect the co-expression of CLDN8 and IL22 in colon cell lines. The targets of LINC00662 were predicated by Starbase v2.0. The target genes of miR-340-5p were predicated by miRDB and TargetScan. GO and KEGG enrichment analysis were performed by DAVID website. Results LINC00662 was up-regulation in colon cancer tissues and cell lines. Univariate Cox regression analysis showed that the LINC00662 expression level was related to the poor prognosis. LINC00662-WT and miR-340-5p mimics co-transfection depressed luciferase activity and IL22/CLDN8-WT and miR-340-5p inhibitors co-transfection memorably motivated luciferase activity. LINC00662 overexpression promoted cell proliferation, invasion and migration, and inhibited cell apoptosis in colon cancer. In vivo xenograft studies in nude mice manifested that LINC00662 overexpression prominently accelerate tumor growth. There was an opposite reaction in the biological functions of colon cells and tumor growth between LINC00662 overexpression and LINC00662 inhibition in vitro and in vivo. The functions of miR-340-5p mimics regulating the biological functions of colon cells and tumor growth were consistent with those of LINC00662 inhibition. CLDN8 and IL22, as target genes of miR-340-5p, reversed the functions of LINC00662 affecting the biological functions of colon cells and the protein levels of Bax, Bcl-2, XIAP, VEGF, MMP-2, E-cadherin and N-cadherin. Co-immunoprecipitation experiments indicated that CLDN8 directly interact with IL22 in colon cell lines. LINC00662 regulated CLDN8 and IL22 expressions and the activation of ERK signaling pathway via targeting miR-340-5p. Conclusion LINC00662 overexpression promoted the occurrence and development of colon cancer by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway.


2000 ◽  
Vol 20 (12) ◽  
pp. 4340-4349 ◽  
Author(s):  
M. Adelaida Garcia-Gimeno ◽  
Kevin Struhl

ABSTRACT In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.


2020 ◽  
Author(s):  
Christian Dubiella ◽  
Benika J. Pinch ◽  
Daniel Zaidman ◽  
Theresa D. Manz ◽  
Evon Poon ◽  
...  

AbstractThe peptidyl-prolyl cis-trans isomerase, Pin1, acts as a unified signaling hub that is exploited in cancer to activate oncogenes and inactivate tumor suppressors, in particular through up-regulation of c-Myc target genes. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to discover covalent inhibitors targeting Pin1’s active site nucleophile - Cys113, leading to the development of Sulfopin, a double-digit nanomolar Pin1 inhibitor. Sulfopin is highly selective for Pin1, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement, and phenocopies genetic knockout of Pin1. Although Pin1 inhibition had a modest effect on viability in cancer cell cultures, Sulfopin induced downregulation of c-Myc target genes and reduced tumor initiation and tumor progression in murine and zebrafish models of MYCN-driven neuroblastoma. Our results suggest that Sulfopin is a suitable chemical probe for assessing Pin1-dependent pharmacology in cells and in vivo. Moreover, these studies indicate that Pin1 should be further investigated as a potential cancer target.


2019 ◽  
Author(s):  
Jiexin Li ◽  
Zhuojia Chen ◽  
Feng Chen ◽  
Yuyi Ling ◽  
Yanxi Peng ◽  
...  

AbstractStudies on biological functions ofN6-methyladenosine (m6A) modification in mRNA have sprung up in recent years. Here we construct and characterize a CRISPR-Cas13b-based tool for the first time that targeted m6A methylation of mRNA by fusing the catalytically dead Type VI-B Cas13 enzyme from Prevotella sp.P5-125 (dPspCas13b) with the m6A demethylase ALKBH5, which is named as dm6ACRISPR. Subsequently, such system is shown to specific demethylase the m6A of target mRNA such as CYB5A to increase its mRNA stability. In addition, the dm6ACRISPR system appeared to afford efficient demethylation of the target genes with tenuous off-target effects. Together, we provide a programmable andin vivomanipulation tool to study mRNA modification and its potential biological functions of specific gene.


2019 ◽  
Vol 41 (5) ◽  
pp. 678-688 ◽  
Author(s):  
Lu Yu ◽  
Feng Ye ◽  
Yi-Yi Li ◽  
Yi-Zhi Zhan ◽  
Yang Liu ◽  
...  

Abstract Upregulation of histone methyltransferase SET domain bifurcated 1 (SETDB1) is associated with poor prognosis in cancer patients. However, the mechanism of oncogenicity of SETDB1 in cancer is hitherto unknown. Here, we show that SETDB1 is upregulated in human colorectal cancer (CRC) where its level correlates with poor clinical outcome. Ectopic SETDB1 promotes CRC cell proliferation, whereas SETDB1 attenuation inhibits this process. Flow cytometry reveals that SETDB1 promotes proliferation by driving the CRC cell cycle from G0/G1 phase to S phase. Mechanistically, SETDB1 binds directly to the STAT1 promoter region resulting in increased STAT1 expression. Functional characterization reveals that STAT1-CCND1/CDK6 axis is a downstream effector of SETDB1-mediated CRC cell proliferation. Furthermore, SETDB1 upregulation is sufficient to accelerate in vivo proliferation in xenograft animal model. Taken together, our results provide insight into the upregulation of SETDB1 within CRC and can lead to novel treatment strategies targeting this cell proliferation-promoting gene.


Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

AbstractEscherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD, but the underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features, in particular the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has a potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of the BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of the protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tiantian Liu ◽  
Pengli Xu ◽  
Shuishui Qi ◽  
Shaorui Ke ◽  
Qin Hu ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with high incidence, morbidity, and mortality rates. Jinshui Huanxian formula (JHF) is an empirical formula that targets the pathogenesis of lung-kidney qi deficiency and phlegm-blood stasis in pulmonary fibrosis (PF). The purpose of this study was to explore JHF’s potential pharmacological mechanisms in IPF therapy using network intersection analysis. JHF’s primary active components and corresponding target genes were predicted using various databases. Two sets of IPF disease genes were obtained from the DisGeNET and GEO databases and two sets of IPF drug targets were collected. The disease and drug target genes were analyzed. The JHF target genes that intersected with IPF’s differentially expressed genes were identified to predict JHF’s targets of action in IPF. The functions and pathways of predicted targets acting on IPF were analyzed using the DAVID and KEGG pathway databases. Finally, the resulting drug target mechanisms were validated in a rat model of PF. The initial analyses identified 494 active compounds and 1,304 corresponding targets for JHF. The intersection analysis revealed four common genes for the JHF targets, IPF disease, and anti-IPF drugs in the KEGG database. Furthermore, these genes were targeted by several JHF compounds. Seventy-two JHF targets were closely related to IPF, which suggests that they are therapeutically relevant. Target screening revealed that they regulate IPF through 18 pathways. The targets’ molecular functions included regulation of oxidoreductase activity, kinase regulator activity, phosphotransferase activity, and transmembrane receptor protein kinase activity. In vivo experiments showed that JHF alleviated the degree of PF, including decreases in collagen deposition and epithelial-mesenchymal transition. This study systematically explored JHF’s mechanisms to identify the specific target pathways involved in IPF. The generated pharmacological network, paired with in vivo validation, elucidates the potential roles and mechanisms of JHF in IPF therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2488-2488
Author(s):  
Warren Fiskus ◽  
Rekha Rao ◽  
Ramesh Balusu ◽  
Jianguo Tao ◽  
Eduardo M. Sotomayor ◽  
...  

Abstract Abstract 2488 Lysine specific histone methylation and deacetylation are chromatin modifications that, along with DNA methylation, are involved in the epigenetic silencing of tumor suppressor genes (TSGs). This silencing is mediated by multi-protein complexes PRC (polycomb repressive complexes) 1 and 2. Of the three core protein components of PRC2, i.e., EZH2, SUZ12 and EED, EZH2 has the SET domain with its intrinsic histone methyltransferase activity, which induces the trimethylation (Me3) of lysine (K) 27 on histone (H) 3-a repressive histone modification mediating gene repression. The PRC1 components include BMI1, MEL18, RING1 and RING2, and it serves to further compact the chromatin at PRC2 target genes. The RING1 and RING2 proteins are responsible for the ubiquitylation of K119 on H2A. We have previously reported that treatment with the pan-histone deacetylase inhibitor panobinostat (PS, Novartis Pharmaceutical Corp) depletes PRC2 complex proteins EZH2 and SUZ12 and the DNA methyltransferase (DNMT) 1. We also showed that co-treatment with the S-adenosylhomocysteine hydrolase and EZH2 inhibitor, DZNep, further depleted PRC2 complex proteins and, in combination with PS, induced synergistic apoptosis of cultured and primary AML cells (Blood 2009; 114: 2733–43). In the present studies we determined the effects of DZNep and/or PS on the expression of PRC1 and PRC2 proteins in human Mantle Cell Lymphoma (MCL) cells. Treatment with DZNep dose-dependently depleted EZH2, SUZ12 and BMI1 expression as well as inhibited K27Me3, while inducing K27 acetylation on H3. DZNep treatment also induced p21, p27 and FBXO32, while depleting the levels of cyclin D1 in the cultured MCL JeKo-1 and MO2058 cells. Similar induction of p21, p27 and FBXO32 were also observed, following siRNA knockdown of EZH2 in the cultured MCL cells. Notably, DZNep also induced similar perturbations in primary, patient-derived MCL cells. Treatment with PS alone attenuated EZH2, SUZ12 and DNMT1, as well as depleted the protein expression of BMI1, RING2 and MEL18 in the cultured MCL cells. This was associated with attenuation of H3K27Me3 and augmentation of H3K4Me3 chromatin marks. PS treatment also induced heat shock protein (hsp) 90 acetylation, and depleted the levels of hsp90 client proteins in the MCL cells, including CDK4, c-RAF and AKT. As compared to treatment with each agent alone, co-treatment with DZNep and PS caused greater depletion of EZH2, SUZ12 and BMI1, accompanied with greater induction of p21 and p27 but attenuation of cyclin D1 expression. Co-treatment with DZNep and PS also induced cell cycle growth arrest and synergistically induced apoptosis of JeKo-1 and MO2058, as well as of primary MCL cells derived from 3 patients with MCL (combination indices <1.0). Taken together these findings indicate that by targeted depletion of the PRC2 and PRC1 components and associated chromatin and other protein modifications (hsp90 acetylation), co-treatment with DZNep and PS represents a superior therapy of human MCL cells. These studies also support the in vivo testing of combined epigenetic therapies involving agents that target deregulated epigenetic mechanisms, e.g., histone deacetylases, methyl transferases and demethylases, as well as target DNMTs in the therapy of MCL. Disclosures: Atadja: Novartis: Employment.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


Sign in / Sign up

Export Citation Format

Share Document