scholarly journals Sulfopin, a selective covalent inhibitor of Pin1, blocks Myc-driven tumor initiation and growth in vivo

2020 ◽  
Author(s):  
Christian Dubiella ◽  
Benika J. Pinch ◽  
Daniel Zaidman ◽  
Theresa D. Manz ◽  
Evon Poon ◽  
...  

AbstractThe peptidyl-prolyl cis-trans isomerase, Pin1, acts as a unified signaling hub that is exploited in cancer to activate oncogenes and inactivate tumor suppressors, in particular through up-regulation of c-Myc target genes. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to discover covalent inhibitors targeting Pin1’s active site nucleophile - Cys113, leading to the development of Sulfopin, a double-digit nanomolar Pin1 inhibitor. Sulfopin is highly selective for Pin1, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement, and phenocopies genetic knockout of Pin1. Although Pin1 inhibition had a modest effect on viability in cancer cell cultures, Sulfopin induced downregulation of c-Myc target genes and reduced tumor initiation and tumor progression in murine and zebrafish models of MYCN-driven neuroblastoma. Our results suggest that Sulfopin is a suitable chemical probe for assessing Pin1-dependent pharmacology in cells and in vivo. Moreover, these studies indicate that Pin1 should be further investigated as a potential cancer target.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tiantian Liu ◽  
Pengli Xu ◽  
Shuishui Qi ◽  
Shaorui Ke ◽  
Qin Hu ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with high incidence, morbidity, and mortality rates. Jinshui Huanxian formula (JHF) is an empirical formula that targets the pathogenesis of lung-kidney qi deficiency and phlegm-blood stasis in pulmonary fibrosis (PF). The purpose of this study was to explore JHF’s potential pharmacological mechanisms in IPF therapy using network intersection analysis. JHF’s primary active components and corresponding target genes were predicted using various databases. Two sets of IPF disease genes were obtained from the DisGeNET and GEO databases and two sets of IPF drug targets were collected. The disease and drug target genes were analyzed. The JHF target genes that intersected with IPF’s differentially expressed genes were identified to predict JHF’s targets of action in IPF. The functions and pathways of predicted targets acting on IPF were analyzed using the DAVID and KEGG pathway databases. Finally, the resulting drug target mechanisms were validated in a rat model of PF. The initial analyses identified 494 active compounds and 1,304 corresponding targets for JHF. The intersection analysis revealed four common genes for the JHF targets, IPF disease, and anti-IPF drugs in the KEGG database. Furthermore, these genes were targeted by several JHF compounds. Seventy-two JHF targets were closely related to IPF, which suggests that they are therapeutically relevant. Target screening revealed that they regulate IPF through 18 pathways. The targets’ molecular functions included regulation of oxidoreductase activity, kinase regulator activity, phosphotransferase activity, and transmembrane receptor protein kinase activity. In vivo experiments showed that JHF alleviated the degree of PF, including decreases in collagen deposition and epithelial-mesenchymal transition. This study systematically explored JHF’s mechanisms to identify the specific target pathways involved in IPF. The generated pharmacological network, paired with in vivo validation, elucidates the potential roles and mechanisms of JHF in IPF therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Rogawski ◽  
Jing Deng ◽  
Hao Li ◽  
Hongzhi Miao ◽  
Dmitry Borkin ◽  
...  

AbstractASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.


2019 ◽  
Vol 19 (3) ◽  
pp. 147-171
Author(s):  
Cia-Hin Lau ◽  
Chung Tin

Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098794
Author(s):  
Imran Mukhtar ◽  
Haseeb Anwar ◽  
Osman Asghar Mirza ◽  
Qasim Ali ◽  
Muhammad Umar Ijaz ◽  
...  

In the contemporary research world, the intestinal microbiome is now envisioned as a new body organ. Recently, the gut microbiome represents a new drug target in the gut, since various orthologues of intestinal drug transporters are also found present in the microbiome that lines the small intestine of the host. Owing to this, absorbance of sulpiride by the gut microbiome in an in vivo albino rats model was assessed after the oral administration with a single dose of 20mg/kg b.w. The rats were subsequently sacrificed at 2, 3, 4, 5 and 6 hours post oral administration to collect the gut microbial mass pellet. The drug absorbance by the gut microbiome was determined by pursuing the microbial lysate through RP-HPLC-UV. Total absorbance of sulpiride by the whole gut microbiome and drug absorbance per milligram of microbial pellet were found significantly higher at 4 hours post-administration as compared to all other groups. These results affirm the hypothesis that the structural homology between membrane transporters of the gut microbiome and intestinal epithelium of the host might play an important role in drug absorbance by gut microbes in an in vivo condition.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pusheng Quan ◽  
Kai Wang ◽  
Shi Yan ◽  
Shirong Wen ◽  
Chengqun Wei ◽  
...  

AbstractThis study aimed to identify potential novel drug candidates and targets for Parkinson’s disease. First, 970 genes that have been reported to be related to PD were collected from five databases, and functional enrichment analysis of these genes was conducted to investigate their potential mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate drug-target genes between the PD group and the control group in the public dataset with the largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their corresponding targets were identified. Some target genes of the ten drugs significantly overlapped with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed drug-target genes with p < 0.05 were screened. This work will facilitate further research into the possible efficacy of new drugs for PD and will provide valuable clues for drug design.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 827
Author(s):  
Yiqiao Luo ◽  
Bin Yan ◽  
Li Liu ◽  
Libo Yin ◽  
Huihui Ji ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, which meanwhile has shown promise in pilot studies in patients. We examined whether sulforaphane interferes with lncRNA signaling and analyzed five PDAC and two nonmalignant cell lines, patient tissues (n = 30), and online patient data (n = 350). RT-qPCR, Western blotting, MTT, colony formation, transwell and wound healing assays; gene array analysis; bioinformatics; in situ hybridization; immunohistochemistry and xenotransplantation were used. Sulforaphane regulated the expression of all of five examined lncRNAs, but basal expression, biological function and inhibition of H19 were of highest significance. H19 siRNA prevented colony formation, migration, invasion and Smad2 phosphorylation. We identified 103 common sulforaphane- and H19-related target genes and focused to the virus-induced tumor promoter APOBEC3G. APOBEC3G siRNA mimicked the previously observed H19 and sulforaphane effects. In vivo, sulforaphane- or H19 or APOBEC3G siRNAs led to significantly smaller tumor xenografts with reduced expression of Ki67, APOBEC3G and phospho-Smad2. Together, we identified APOBEC3G as H19 target, and both are inhibited by sulforaphane in prevention of PDAC progression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masahiro Inoue ◽  
Shota Arichi ◽  
Tsuyoshi Hachiya ◽  
Anna Ohtera ◽  
Seok-Won Kim ◽  
...  

Abstract Objective In order to assess the applicability of a direct-to-consumer (DTC) genetic testing to translational research for obtaining new knowledge on relationships between drug target genes and diseases, we examined possibility of these data by associating SNPs and disease related phenotype information collected from healthy individuals. Results A total of 12,598 saliva samples were collected from the customers of commercial service for SNPs analysis and web survey were conducted to collect phenotype information. The collected dataset revealed similarity to the Japanese data but distinguished differences to other populations of all dataset of the 1000 Genomes Project. After confirmation of a well-known relationship between ALDH2 and alcohol-sensitivity, Phenome-Wide Association Study (PheWAS) was performed to find association between pre-selected drug target genes and all the phenotypes. Association was found between GRIN2B and multiple phenotypes related to depression, which is considered reliable based on previous reports on the biological function of GRIN2B protein and its relationship with depression. These results suggest possibility of using SNPs and phenotype information collected from healthy individuals as a translational research tool for drug discovery to find relationship between a gene and a disease if it is possible to extract individuals in pre-disease states by properly designed questionnaire.


Sign in / Sign up

Export Citation Format

Share Document