scholarly journals Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kerstin Johann ◽  
Toszka Bohn ◽  
Fatemeh Shahneh ◽  
Natascha Luther ◽  
Alexander Birke ◽  
...  

AbstractThe acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240325
Author(s):  
Angela Yulia ◽  
Alice J. Varley ◽  
Natasha Singh ◽  
Kaiyu Lei ◽  
Rachel Tribe ◽  
...  

We previously reported that at term pregnancy, a decline in myometrial protein kinase A (PKA) activity leads to an exchange protein activated by cyclic AMP (Epac1)-dependent increase in oxytocin receptor (OTR) expression, promoting the onset of labour. Here, we studied the changes in the cyclic adenosine monophosphate (cAMP) effector system present in different phenotypes of preterm labour (PTL). Myometrial biopsies obtained from women with phenotypically distinct forms of PTL and the levels of PKA and OTR were examined. Although we found similar changes in the cAMP effector pathway in all forms of PTL, only in the case of twin PTL (T-PTL) was myometrial OTR levels increased in association with these results. Although there were several changes in the mRNA levels of components of the cAMP synthetic pathway, the total myometrial cAMP levels did not change with the onset of any subtype of PTL. With regards to the expression of cAMP-responsive genes, we found that the mRNA levels of 4 of the 5 cAMP-down-regulated genes were increased in T-PTL, similar to our findings in term labour. These data signify that although changes in the cAMP effector system were common to all forms of PTL, only in T-PTL were OTR levels increased. Similarly, the mRNA levels of cAMP-repressed genes were only increased in T-PTL supporting the concept that the decline in PKA levels influences myometrial function driving the onset of T-PTL.


2020 ◽  
Vol 21 (13) ◽  
pp. 4635 ◽  
Author(s):  
Shipra Gandhi ◽  
Ahmed Elkhanany ◽  
Masanori Oshi ◽  
Tao Dai ◽  
Mateusz Opyrchal ◽  
...  

Breast cancer (BC) patients experience increased stress with elevated cortisol levels, increasing risk of cancer recurrence. Cortisol binds to a cytoplasmic receptor, glucocorticoid receptor (GR) encoded by GR gene (NR3C1). We hypothesized that not only cancer cells, but even immune cells in the tumor microenvironment (TME) may contribute to GR expression in bulk tumor and influence prognosis. To test this, mRNA expression data was accessed from METABRIC and TCGA. “High” and “low” expression was based on highest and lowest quartiles of NR3C1 gene expression, respectively. Single-cell sequencing data were obtained from GSE75688 and GSE114725 cohorts. Computer algorithms CIBERSORT, Gene Set Enrichment Analysis and TIMER were used. GR-high BC has better median disease-free and disease-specific survival. Single cell sequencing data showed higher GR expression on immune cells compared to cancer and stromal cells. Positive correlation between GR-high BC and CD8+ T-cells was noted. In GR-high tumors, higher cytolytic activity (CYT) with decreased T-regulatory and T-follicular helper cells was observed. High GR expression was associated with lower proliferation index Ki67, enriched in IL-2_STAT5, apoptosis, KRAS, TGF-β signaling, and epithelial-to-mesenchymal transition. Immune cells significantly contribute to GR expression of bulk BC. GR-high BC has a favorable TME with higher CYT with favorable outcomes.


Author(s):  
J. L. Maciaszek ◽  
B. Andemariam ◽  
G. Lykotrafitis

Irregular sickle red blood cells (RBCs) can contribute to the pathogenesis of vasoocclusion and other complications of sickle cell disease (SCD) via abnormal adherence to the vascular endothelium. It has previously been demonstrated that epinephrine enhances SCD RBC adhesion by activating the BCAM/Lu and ICAM-4 surface receptors [1–2]. Epinephrine acts on the RBC β2-adrenergic receptor, thereby activating Gas proteins that stimulate adenylyl cyclase (AC). This enzyme catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), leading to protein kinase A (PKA) activation, an intermediate step in the upregulation of BCAM/Lu and ICAM-4 mediated adhesion. The interaction of BCAM/Lu with the α5 chain of laminin may contribute to vaso-occlusive events in SCD due to overexpression of BCAM on SCD RBCs.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1835 ◽  
Author(s):  
David B. Finlay ◽  
Wayne R. Joseph ◽  
Natasha L. Grimsey ◽  
Michelle Glass

The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly). Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP) and phosphorylation of extracellular signal-regulated kinase (ERK), in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R), were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence) and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine). This A108N mutant did cause an increase in surface receptor expression (which may argue for reduced constitutive activity), but no ligand-mediated effects were detected. Two glioblastoma multiforme cell lines (which endogenously express GPR18) were assayed for NAGly-induced pERK phosphorylation, with negative results. Despite a lack of ligand-mediated responses in all assays, the constitutive trafficking of GPR18 remains an interesting facet of receptor function and will have consequences for understanding the role of GPR18 in physiology.


2019 ◽  
Vol 46 (2) ◽  
pp. 107 ◽  
Author(s):  
Lei Zhang ◽  
Jun Yu ◽  
Chun Wang ◽  
Wei Wei

Rheumatoid arthritis (RA) is a chronic inflammatory and systemic autoimmune disease with an unknown aetiology. Accumulative studies suggest that the pathogenesis of RA involves the excessive activation of synoviocytes and immune cells, increasing the secretion of inflammatory mediators and cytokines in synoviocytes, causing dysfunctional E-prostanoid (EP)-G-protein-cyclic adenosine monophosphate (cAMP) and mitogen-associated-protein kinase (MAPK) signalling in synoviocytes. Total glucosides of paeony (TGP) extracted from the roots of Paeonia lactiflora Pall, was approved by the China Food and Drug Administration as an anti-inflammatory and immuno-modulator drug in 1998. Paeoniflorin (Pae), a water-soluble monoterpene glucoside,is the main effective component of TGP. TGP and Pae produce anti-inflammatory and immuno-regulatory effects by suppressing immune cells and synoviocytes activation, decreasing inflammatory substance production and restoring abnormal signalling in synoviocytes. In this review, the regulation of the inflammatory-immune responses and the therapeutic mechanism between RA and TGP and Pae are discussed in detail. The aim of this review was to provide novel insights into the treatment of RA.


2006 ◽  
Vol 174 (7) ◽  
pp. 1047-1058 ◽  
Author(s):  
Saumen Pal ◽  
Jing Wu ◽  
Justin K. Murray ◽  
Samuel H. Gellman ◽  
Michele A. Wozniak ◽  
...  

Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a “neuropeptide,” neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B−mediated ablation of Ca2+ oscillations and elevation of 3′–5′ cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling.


2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


Sign in / Sign up

Export Citation Format

Share Document