The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA)

2019 ◽  
Vol 46 (2) ◽  
pp. 107 ◽  
Author(s):  
Lei Zhang ◽  
Jun Yu ◽  
Chun Wang ◽  
Wei Wei

Rheumatoid arthritis (RA) is a chronic inflammatory and systemic autoimmune disease with an unknown aetiology. Accumulative studies suggest that the pathogenesis of RA involves the excessive activation of synoviocytes and immune cells, increasing the secretion of inflammatory mediators and cytokines in synoviocytes, causing dysfunctional E-prostanoid (EP)-G-protein-cyclic adenosine monophosphate (cAMP) and mitogen-associated-protein kinase (MAPK) signalling in synoviocytes. Total glucosides of paeony (TGP) extracted from the roots of Paeonia lactiflora Pall, was approved by the China Food and Drug Administration as an anti-inflammatory and immuno-modulator drug in 1998. Paeoniflorin (Pae), a water-soluble monoterpene glucoside,is the main effective component of TGP. TGP and Pae produce anti-inflammatory and immuno-regulatory effects by suppressing immune cells and synoviocytes activation, decreasing inflammatory substance production and restoring abnormal signalling in synoviocytes. In this review, the regulation of the inflammatory-immune responses and the therapeutic mechanism between RA and TGP and Pae are discussed in detail. The aim of this review was to provide novel insights into the treatment of RA.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1554
Author(s):  
Dabin Choi ◽  
Wesuk Kang ◽  
Taesun Park

The critical roles of keratinocytes and resident mast cells in skin allergy and inflammation have been highlighted in many studies. Cyclic adenosine monophosphate (cAMP), the intracellular second messenger, has also recently emerged as a target molecule in the immune reaction underlying inflammatory skin conditions. Here, we investigated whether undecane, a naturally occurring plant compound, has anti-allergic and anti-inflammatory activities on sensitized rat basophilic leukemia (RBL-2H3) mast cells and HaCaT keratinocytes and we further explored the potential involvement of the cAMP as a molecular target for undecane. We confirmed that undecane increased intracellular cAMP levels in mast cells and keratinocytes. In sensitized mast cells, undecane inhibited degranulation and the secretion of histamine and tumor necrosis factor α (TNF-α). In addition, in sensitized keratinocytes, undecane reversed the increased levels of p38 phosphorylation, nuclear factor kappaB (NF-κB) transcriptional activity and target cytokine/chemokine genes, including thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8 (IL-8). These results suggest that undecane may be useful for the prevention or treatment of skin inflammatory disorders, such as atopic dermatitis, and other allergic diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kerstin Johann ◽  
Toszka Bohn ◽  
Fatemeh Shahneh ◽  
Natascha Luther ◽  
Alexander Birke ◽  
...  

AbstractThe acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.


2006 ◽  
Vol 6 ◽  
pp. 1241-1246 ◽  
Author(s):  
A. Catania ◽  
G. Colombo ◽  
C. Rossi ◽  
A. Carlin ◽  
A. Sordi ◽  
...  

The natural antimicrobial peptides are ancient host defense effector molecules, present in organisms across the evolutionary spectrum. Several properties of α-melanocyte stimulating hormone (α-MSH) suggested that it could be a natural antimicrobial peptide. α-MSH is a primordial peptide that appeared during the Paleozoic era, long before adaptive immunity developed and, like natural antimicrobial molecules, is produced by barrier epithelia, immunocytes, and within the central nervous system. α-MSH was discovered to have antimicrobial activity against two representative pathogens,Staphylococcus aureusandCandida albicans. The candidacidal influences of α-MSH appeared to be mediated by increases in cell cyclic adenosine monophosphate (cAMP). The cAMP-inducing capacity of α-MSH likely interferes with the yeast's own regulatory mechanisms of this essential signaling pathway. It is remarkable that this mechanism of action in yeast mimics the influences of α-MSH in mammalian cells in which the peptide binds to G-protein-linked melanocortin receptors, activates adenylyl cyclase, and increases cAMP. When considering that most of the natural antimicrobial peptides enhance the local inflammatory reaction, the anti-inflammatory and antipyretic effects of α-MSH confer unique properties to this molecule relative to other natural antimicrobial molecules. Synthetic derivatives, chemically stable and resistant to enzymatic degradation, could form the basis for novel therapies that combine anti-inflammatory and antimicrobial properties.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
D. Lattuada ◽  
R. Gualtierotti ◽  
K. Crotta ◽  
P. Seneci ◽  
F. Ingegnoli ◽  
...  

Rheumatoid arthritis (RA) is characterized by synovial inflammation and hyperplasia. Fibroblast-like synoviocytes (FLSs) are apoptosis-resistant and contribute to the pathogenesis of RA by producing cytokines and proteolytic enzymes, which degrade the extracellular matrix. We evaluated the proapoptotic and anti-inflammatory activity of the small molecule Smac127 on RA-FLSs cultured in synovial fluid (SF), in order to reproduce the physiopathological environmental characteristic of RA joints. In this context, Smac127 induces apoptosis by inhibiting apoptosis proteins (IAPs). This inhibition activates caspase 3 and restores the apoptotic pathway. In addition, Smac127 induces a significant inhibition of the secretion of IL-15 and IL-6, stimulation of pannus formation, and damage of bone and cartilage in RA. Also the secretion of the anti-inflammatory cytokine IL-10 is dramatically increased in the presence of Smac127. The cartilage destruction in RA patients is partly mediated by metalloproteinases; here we show that the MMP-1 production by fibroblasts cultured in SF is significantly antagonized by Smac127. Conversely, this molecule has no significant effects on RANKL and OPG production. Our observations demonstrate that Smac127 has beneficial regulatory effects on inflammatory state of RA-FLSs and suggest a potential use of Smac127 for the control of inflammation and disease progression in RA.


2013 ◽  
Vol 25 (2) ◽  
pp. 351 ◽  
Author(s):  
Koumei Shirasuna ◽  
Takashi Shimizu ◽  
Motozumi Matsui ◽  
Akio Miyamoto

In the mammalian ovary, the corpus luteum (CL) is a unique transient endocrine organ displaying rapid angiogenesis and time-dependent accumulation of immune cells. The CL closely resembles ‘transitory tumours’, and the rate of luteal growth equals that of the fastest growing tumours. Recently, attention has focused on multiple roles of immune cells in luteal function, not only in luteolysis (CL disruption by immune responses involving T lymphocytes and macrophages), but also in CL development (CL remodelling by different immune responses involving neutrophils and macrophages). Neutrophils and macrophages regulate angiogenesis, lymphangiogenesis, and steroidogenesis by releasing cytokines in the CL. In addition, functional polarisation of neutrophils (proinflammatory N1 vs anti-inflammatory N2) and macrophages (proinflammatory M1 vs anti-inflammatory M2) has been demonstrated. This new concept concurs with the phenomenon of immune function within the luteal microenvironment: active development of the CL infiltrating anti-inflammatory N2 and M2 versus luteal regression together with proinflammatory N1 and M1. Conversely, excessive angiogenic factors and leucocyte infiltration result in indefinite disordered tumour development. However, the negative feedback regulator vasohibin-1 in the CL prevents excessive tumour-like vasculogenesis, suggesting that CL development has well coordinated time-dependent mechanisms. In this review, we discuss the physiological roles of immune cells involved in innate immunity (e.g. neutrophils and macrophages) in the local regulation of CL development with a primary focus on the cow.


2021 ◽  
Vol 14 (4) ◽  
pp. 309
Author(s):  
Sebastian Makuch ◽  
Kamil Więcek ◽  
Marta Woźniak

Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.


2022 ◽  
Vol 23 (2) ◽  
pp. 905
Author(s):  
Sunhee Jang ◽  
Eui-Jong Kwon ◽  
Jennifer Jooha Lee

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated with synovial tissue proliferation, pannus formation, cartilage destruction, and systemic complications. Currently, advanced understandings of the pathologic mechanisms of autoreactive CD4+ T cells, B cells, macrophages, inflammatory cytokines, chemokines, and autoantibodies that cause RA have been achieved, despite the fact that much remains to be elucidated. This review provides an updated pathogenesis of RA which will unveil novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document