scholarly journals Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinxin Xia ◽  
Tsz-Ki Lau ◽  
Xuyun Guo ◽  
Yuhao Li ◽  
Minchao Qin ◽  
...  

AbstractThe bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.

1999 ◽  
Vol 590 ◽  
Author(s):  
H. C. Kang ◽  
S. H. Seo ◽  
D. Y. Noh

ABSTRACTWe present an x-ray scattering study of the oxidation of AIN/sapphire films into λ-A12O3 upon annealing. Epitaxial AIN/Sapphire(0001) transforms into nano-crystalline epitaxial λ-A12O3 during annealing at temperatures above 800°C in air. The crystalline orientational relation between the λ-Al2O3 and AIN are < 111 > // < 0001 > in the film normal direction, and < 110 > // < 1120 > in the film plane direction. The domain size of the spinel λ-A1203 crystalline is smaller than 50 Å in both out-of-plane and in-plane directions. The XPS depth profiles of the oxide film showed that the film is composed of aluminum and oxygen, and the atomic concentration ratio is about 2:3.


1999 ◽  
Vol 14 (7) ◽  
pp. 2905-2911 ◽  
Author(s):  
Sangsub Kim ◽  
Tae Soo Kang ◽  
Jung Ho Je

Epitaxial (Ba0.5Sr0.5) TiO3 thin films of two different thickness (∼25 and ∼134 nm) on MgO(001) prepared by a pulsed laser deposition method were studied by synchrotron x-ray scattering measurements. The film grew initially with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became significantly rougher, but the interface between the film and the substrate did not. In the early stage of growth, the film was highly strained in a tetragonal structure (c/a = 1.04) with the longer axis parallel to the surface normal direction. As the growth proceeded further, it relaxed to a cubic structure with the lattice parameter near the bulk value, and the mosaic distribution improved significantly in both in- and out-of-plane directions. The thinner film (∼25 nm) showed only one domain limited mainly by the film thickness, but the thicker film (∼134 nm) exhibited three domains along the surface normal direction.


Author(s):  
Yu Jin Kim ◽  
Chang Eun Song ◽  
Sanjaykumar R. Suranagi ◽  
Jong-Cheol Lee ◽  
Chan Eon Park

This study comprehensively explores the nanostructural properties of two diketopyrrolo[3,4-c]pyrrole-1,4-dione (DPP)-based small molecules with different alkyl side groups and their blends with the fullerene derivative PC71BM, using grazing-incidence wide-angle X-ray scattering synchrotron techniques. Preferentially relative face-on orientation within the larger and more ordered stacking phase of SM1 with its shorter side group (ethylhexyl) was observed in the majority of both pristine and blend thin films, whereas SM2 crystals showed strictly perpendicular orientation. These contrasting crystalline characteristics led to significant differences in the results, from which crystalline structure–performance property correlations are proposed. Thus, the results not only demonstrate important scientific insights into the relationship between molecular structure and crystalline formation but also provide molecular design directions that will facilitate further improvement to the morphology and performance of DPP-based small-molecule solar cells.


2014 ◽  
Vol 228 (10-12) ◽  
Author(s):  
Jens Rüdiger Stellhorn ◽  
Shinya Hosokawa ◽  
Wolf-Christian Pilgrim

AbstractAlthough X-ray diffraction is still mainly used to determine crystal structures, the demand for an understanding of the atomic arrangement in disordered matter has progressively become more important over the past decades. However, apart from simple model systems, it is still a challenging task to unravel the microscopic ordering of the atoms in amorphous multi-component materials, although this knowledge becomes increasingly important in modern materials science, in which the physical properties are often related to the microscopic ordering of the different chemical species of the substance. This article reports about the combination of Anomalous X-ray Scattering (AXS) with Reverse Monte Carlo Computer simulation (RMC) as a proper tool to precisely determine the microscopic structural characteristics in such systems with high reliability. The basic principles of the method will be illustrated and some examples of modern materials will be given to proof the applicability and the capability of this method.


1990 ◽  
Vol 202 ◽  
Author(s):  
P. F. Miceli ◽  
K. W. Moyers ◽  
C. J. Palmstrøm

ABSTRACTThe results of a high resolution x-ray scattering study of [001]ErAs epitaxial layers grown on [001]GaAs is presented. ErAs is pseudomorphic on GaAs for thicknesses below 70Å and, for thicker films, lattice relaxation is oberved concomitant with an Increase of the In-plane mosaic due to the formation of misfit dislocations. Above 300Å, the out-of-plane transverse scattering from the ErAs lattice planes Is no longer specular and further relaxation Is related to the out-of-plane mosaic. The ratio of elastic constants, C12/C11, Is determined to be 0.126 and the thermal expansion was measured. Thin film Interference oscillations are observed and modeled. ErAs/GaAs Is an Ideal system for x-ray scattering studies of lattice relaxation and structure in epitaxial layers. Films as thin as 20Å have been studied.


1998 ◽  
Vol 541 ◽  
Author(s):  
Sang S. Kim ◽  
Jung H. Je

Abstract((Ba0.5Sr 0.5)TiO3 thin films of two different thicknesses (∼ 250 Å and ∼ 1330 Å) epitaxially prepared on MgO(100) using pulsed laser deposition were studied by synchrotron x-ray scattering measurements. The film initially grew on MgO(100) with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became rougher significantly, but the interface between the film and the substrate did not change so much. In the early stage, the film was highly strained in a tetragonal structure with the longer axis parallel to the surface normal direction. As the growth proceeded further, it was mostly relaxed to a cubic structure with the lattice parameter of the bulk value and the mosaic distribution improved significantly in both the in-plane and the out-of-plane directions. The thinner film showed only one domain limited mainly by the film thickness, but the thicker film exhibited three domains along the surface normal direction.


1999 ◽  
Vol 14 (9) ◽  
pp. 3734-3738 ◽  
Author(s):  
Sang Sub Kim ◽  
Jung Ho Je

An epitaxial BaTiO3 film with 290-nm thickness was prepared on a MgO(001) single-crystal substrate by radio-frequency magnetron sputter deposition. The structural characteristics of the film were studied as a function of temperature in in situ, real-time synchroton x-ray scattering experiments. We found that the as-grown film was strained at room temperature and tetragonally distorted with the c axis normal to the film surface. Interestingly, its lattice parameters were found to be expanded 1.28% and 0.64% in both the in-plane and the out-of-plane directions, respectively (i.e., biaxially), comparing to those of a bulk BaTiO3. More importantly, as it was heated to 600 °C, the tetragonal structure was kept up without the phase transition, which is usually observed in other epitaxial ferroelectric thin films.


1989 ◽  
Vol 160 ◽  
Author(s):  
L. J. Martinez-Miranda ◽  
M. P. Siegal ◽  
P. A. Heiney ◽  
J. J. Santiago-Aviles ◽  
W. R. Graham

AbstractWe have used high resolution grazing incidence x-ray scattering (GIXS) to study the in-plane and out-of-plane structure of epitaxial YSi2-x films grown on Si (111), with thicknesses ranging from 85Å to 510Å. Our results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846Å/c = 4.142Å for the 85Å film to a = 3.877Å/c = 4.121Å for the 510Å film. We correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, our measurements show no evidence for the existence of ordered silicon vacancies in the films.


2008 ◽  
Vol 80 (6) ◽  
pp. 1211-1227 ◽  
Author(s):  
Daniel T. Bowron

This article presents an overview of the use of the empirical potential structure refinement (EPSR) technique for generating three-dimensional atomistic models of liquids and structurally disordered solids that are consistent with experimental neutron and X-ray scattering data. The extension of this technique through the calculation of extended X-ray absorption fine structure (EXAFS) spectra is outlined, and the benefits of this are demonstrated for a range of systems and in particular for our ability to address structural questions of importance in solution chemistry. The model systems chosen as examples for structural analysis are (i) liquid gallium, (ii) silica glass, and (iii) a 1 m aqueous solution of YCl3. The advantages of this analytical approach for addressing chemically specific structural questions in disordered systems are discussed within the context of the experimental alternatives based on the techniques of neutron scattering with isotopic substitution and anomalous X-ray scattering.


2007 ◽  
Vol 7 (4) ◽  
pp. 1406-1413 ◽  
Author(s):  
U-Ser Jeng ◽  
Tsang-Lang Lin ◽  
Kwanwoo Shin ◽  
Hsin-Yi Lee ◽  
Chia-Hung Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document